SCIENTIFIC RESULTS OF EXPLORATIONS BY THE U. S. FISH COMMISSION STEAMER ALBATROSS.
[Published by permission of Hon. Marshall McDonald, Commissioner of Fisheries.]
No. VII.-PRELIMINARY REPORT ON THE COLLECTION OF MOLLUSCA AND BRACHIOPODA OBTAINED IN 18か7-88.

BY
William Healey Dall, A, M., Curator of the Department of Mollusks. (With Plates V to XIV.)

Before proceeding to discuss the particular specimens obtained on the voyage of the U. S. Fish Commission steamer Albatross from Fortress Mouroe in Chesapeake Bay to Magellan Straits and northward to Califormia, it may not be improper to say a few worls on the conditious under which the deep-sca Mollusks exist, aud the reasons why a study of these animals is important for science.

In order that their existence may be maintained, the abyssal mollusks require oxygen to aerate their circulation, food to eat, and a foot-hold upon which they may establish themselves. It is necessary that the conditions shonld be such as will not prevent the development of the eggs by which successive generations are propagated. That they do permit it may be assmmed from the very fact that mollasks in large numbers have been shown beyond all question to exist on the oceanie floor wherever it has been explored.

Formerly, when dredging with the usual appliances in small boats, 100 fathoms (600 feet) was considered extremely deep. If one stauds at the foot of the great Washington obelisk and looks up, the idea of collecting a satisfactory representation of the insects and plants on the ground at its base by dragging a 6 -foot trawl or dredge by a line let down from the apex of the monument strikes one as preposterous. Yet the monument is less than 100 fathoms high. Mnltiply this height ten or fifteen times aud the idea seems, if possible, stil! more umeasonable; yet it is a fact that suceessful dredging has been done from a height above the sea bottom of not lese than twenty-five times the height of the Washington Momment. Living animals have been secured from a depth equalling the distance from the Capitol to Rock Creek, or from the Washington Monument to the Mansion at Allington-that is to say, about $2 \frac{1}{2}$ miles.

It is therefore evident that in speaking of dredging we must revise our terms and define them so as to conform more nearly to the new conditions under which such work is done.

The waters immediately adjacent to the shores were loug ago divided by Forbes and other pioneers in marine exploration into zones or areas, according to the conditions characterizing them ; as, for instance, the Laminarian zone or region of brown kelp, the Coralline zone or region of stony alga, etc. But for general purposes and to contrast the areas of the whole sea one with another, according to their chief characteristics, we may now divide the entire sea bottom into three regions.

The first is that to which light can penetrate, and therefore where marine vegetation can exist. This is the Litoral Region, and in a general way, modified by special conditions at particular places, it may be regarded as extending from the actual shore ont to the limit of 100 fathoms. Beyond this it is practically certain that the light reaching the bottom is insufficient for the growth of sea-weeds. Ontside of this the borlers of the continents slope gradually to the bottom of the ocean, which is found usually at a depth of about 2,500 fathoms.

On the upper parts of these continental slopes the conditions are often very farorable for mariue life. Currents of comparatively warm water, like the Gulf Stream, sweep along, bringing fresh pure water and supplies of food to the animals along their track. The division between the abysises and the slopes is rather a matter of temperature than of mere depth, but the temperature itself is somewhat dependent on the depth. The influence of the great warm currents rarely extends below 700 or 800 fathoms, and this depth corresponds ronghly to a temperature of about 40° Fahr. Below this it diminishes as the de ${ }^{i}$ th increases at the rate of about one-tenth of a degree to 100 fathoms, until the freezing point is reached, thongh there is no reason to suppose that the abyssal water ever actually becomes congealed.

To this cold, dark area of the ocean bottom has been applied the name of the Benthal or Absssal Region.
To the region chiefly on the continental slopes, between the Litoral and Abyssal regions, I gave, some years ago, the name of the Archibenthal Region.

These divisions have been recognized by varions writers and have had several terms applied to them. Those I have mentioned seem to me as characteristic as any, and, in some respects, more convenient than any I have hearl used.

Let ns now consider the conditions monder which life exists in the Abyssal and Archibenthal regions. It may be premised that the differences between them are largely of degree and not of kind and do not require that the two regions shonld be considered separately.

The chief characteristics reside in the composition of the sea water, including its contained gases; in the dynamic status of the deeps, especially in relation to temperature and pressure ; in the mechanical quali-
ties of the materials of which the oceanic floor is composed; and, lastly, in the food supply.

As determined by physicists and chemists, the water of the deep sea varies in the proportions of mineral salts, carbonic acid, and air contained in it very much as does the smface water. In gemeral, at the surface the warmer water of the tropies has the more salt and the less nitrogen. When carried by umrents to the Polar regions and cooled this tropical water sinks to the bottom carrying its excess of salt along with it. The Polar waters are less saline and contain more nitrogen. The proportion of atmospheric air in the water is fomd stricetly relaten to the temperature, the pressure at great lepthe being regardol as haring no bearing on the grestion. The amomen of oxygen in the sea water dimimishes gradually as we descend from the surface mitil about 350 fathoms is reached, when it ceases to change, or, at most, increases slightly until the bottom is attained.

Carbonic acid, accorling to Tornoë, does not exist in a free state in sea water, but ouly in the form of carbonates, or, to a less degree, of bicarbonates. Unless the decomposition of animal matter in some manner sets free the carbonic acid, this conclnsion is one which can not be adopted without question, especially when we consiter the great difficulties which are encomitered in any attempt to obtain, or when obtained to analyze, abyssal water. The effect of erosion on the shells dredged from the deeps, even when they contain the living animal, is so strongly marked, the devices for protection against posion are so recognizable in various species, that the biologist may well call the physicist to a halt, while the latter re examines his data. It is eertain that erosive agencies, of which the effects are imbistinguishable from those known to be due to carbonic acid in other instuces, are extremely active in the deeps.

In general, it seems as if we might safely assume that the composition of abyssal sea water shows no very important differences from that of other sea water, and that the animals existing in it are not exposed to any peculiar influences arising from this sonrce alone.

This can not be said of the physical conditions. Every one knows how oppressive to the bather is the weight of the sea water at only a few feet below the surface, and how difficult it is to dive, still more to remain on the bottom, if only for a few seconds.

But it is difficule to consey any adequate idea of the pressure at such a depth as 2,000 fathoms, or abont 2 miles below the surface. Rope made impervious by tarring is said to have become rednced one-third in its diameter by a descent into these depths. Any hollow object not pervions or elastic is at once crushed. There is no doubt that at some points on the ocean floor the pressure may amomet to several tons to the square inch. If we recall that the arerage pressure in steam boilers is probably much less than 100 pounds to the square inch, it may help towards an appreciation of the abyssal conditions.

The ineritable conclusion is, therefore, that all the animals living under these conditions must have their tissues so constituted as to permit the free permeation of the water through every part in order that the pressure may be equalizen. How this is possible without putting an end to all organic functions is, perhaps, the greatest mystery of abyssal life. How can a large egg, like those of rarious deep-sea animals, pass through the stages of segmeutation and development, with every molecule of its structure in actual contact with ordinary sea water and every solid partiele subjected to a pressure of, say, a thousand pounds to the square inch? Such questions are much easier to ask than to answer ; in fact, no attempt at an answer has, so far as I am aware, ever been offered to biologists.

The looseness of tissue necessary to such a permeation is conspicuous in abyssal animals, whose flabby and gelatinous appearance when they reach the surface is notorious. It is, perhaps, most noticeable in the fishes, which, nevertheless, are often armed with formidable teeth; but, under the great pressures of the deeps, it is quite conceivable that each of these loose and half-lissolving muscles may be compressed and reduced to a condition resembling steel wire, and that the organization thus sustained may be as lithe and sinewy in its native haunts as its shallow-water relatives are in theirs.

It is well known how great an influence on the distribution of shal-low-water species is exerted by the temperature of the water in which they live. No doubt the differences of temperature affect the nervous system, the rate of muscular contraction and the motions of the cilia, by which in mollusks many of the functions of life are aided or wholly carried on.

But it is probable that the inflnence of temperature is far more effect. ively exerted upou the development of the ova, and hence upon the propagation of the species, than directly upon the parents. It is probable that most adult mollusks could endure a very wide range of temperature if the individuals were subjected to the changes by extremely slow degrees; but it has been shown that a difference of one or two degrees below a certain point on the thermometric scale will destroy the embryos of Ostrea or prevent their development, so that they perish. In this way the spread of the species may be effiectually checked, though the adult shell-fish may flourish withont difficulty in the same region.

In the shallower parts of the Archibenthal Region a few great currents like the Gulf Stream may reach, for a small part of their course, the ocean floor, and sweep it clean of sediment and detritus if not entirely of living beings. Such mechanical effect as is produced must be of a rather steady and uniform nature for considerable periods and in no respect resemble the ernshing and grinding which take place on every exposed beach on which the sea rolls up. In fact, regarded as individuals, the mollusks in the path of the Gulf Stream and other
great currents have little or nothing to fear from the mechanical attrition which plays so large a part in the shallows. On the other hand, wherever the force of the stream is not sufficient to sweep the bottom clean, the supplies of oxygen and food brought by it to the colonies along its path so far exceed the normal for quiet waters that the animals thus favored flourish and multiply in a manner never seen in quiet deeps.

The intluence of darkness upon the inhabitants of the Aloyssal Region has often been expatiated upon. The absence of visnal organs, or their preternaturally excessive development beyond the normal of the groms to which the individuals belong, is evidence enongh that the deeps are markedly darker than the shallows. Bnt this evidence proves too much for the claim that the deeps are mathematically dark. Whatever notions may be eutertained or conclusions deduced by the physicist from the premises, the presence of large and remarkably developed eyes in many abyssal animals shows that light of some sort exists eren on the oceanic floor. It is inconceivable that these organs should be developed without any light, and if the experiments and reasoning of the physicist result in the apparent demonstration of absolute darkness in the depths, the facts of nature show that in his premises or his experiments there lurks some vitiating error. It seems absurd to suppose that the phosphorescence of certain animals or parts of animals in the deepsea fauna is a factor of sufficient importance to bring about the development of enormons and exquisitely constructed eyes in a multitude of deep-sea species. A greater or general phosphorescence, such as would amount to a general illumination, has never been claimed by any scientific liologist, and, as a theory, requires a mass of proof which seems unlikely to be fortheoming.

In general, then, we find the physical conditions simpler than those of the shallows and yet much more energetic. The effect of temperature is marked in the distribution of life over cold and warmer areas of sea bottom. The relative importance of the effects of pressure, partial darkness, and of the quietness of abyssal waters, our knowledge is yet too imperfect to allow as to precisely estimate. All, donbtless, have their effect; some of the effects are more obvions than others, but it is by no means certain that the most obvious are necessarily the most important to the organisms concerned.

The mechanical character of the sea bottom is of greater importance than is generally realized. In a very small proportion of its extent the sea bottom is composed of bare, or nearly bare, rock. A way from the shores such a bottom is usually situated in the trough of some great current like the Gulf Stream, and then seems to be nearly bare of animal life. In other cases it may be found on the walls of submarine cliffs, which, for obvious reasons, can hardly be explored for marine life with our present appliances.

The rest of the bottom consists of solid matter in different stages of
subdicision, from something which may be described as calcareous gravel to an impalpable mud which may or may not be dotted with concretions of manganese, iron, or other mineral matter. The gravels are chiefly confined to the Archibenthal Region; the true deeps are generally carpeted with a vised layer of the tinest possible calcareons mud or clay. The latter formation is meager in its fauna as clay is when it occurs in shallow water.

Certain forms of mollusk life flourish in a soft bottom, especially the Nuculite and their allies, which are notably abundant in the depths as well as in the mudly shallows of the Litoral Region. Uthers require some solid substance upon which to perch, a stone, a bit of wood, a spine from some deal echinoderm, something they must have for themselves and for their eggs which shall raise them above the mudly floor. In regions where such objects are rare or absent on the sea bottom such mollusks are equally rare or wanting. Most ingenious are the shifts made in many cases, as when we find Lepetella safely housed in the tubes of dead ammelids or Hydroids, and Choristes taking refuge in the empty ovicapsules of rays or sharks. Small hermit crabs take to the tooth shells (Dentalium) or to the tubnlar Pteropods (C'urierina), or Amalthea roosts on an Echinus spine and builds for itself a platform as it grows, recalliug the arboreal houses of some Oriental savages.

In the Archibenthal Region there is a more or less constant drift of Cébris from the alljacent shallows which gradually forms banks of considerable maguitude. The action of erosion and solution for some reason seems less potent here than in either the shallower or the deeper parts of the sea. In the shallower parts the excess of motion, in the deeps the excess of the eroling agent, may account for this. The fact is known to me from the study of many specimens from both regions and is beyond question.

A feature in forming certain of these banks, to which attention has hitherto not been directed, is worthy of mention. This is the habit of certain fishes, which exist in vast numbers, of frequenting certain areas where they eject the broken shells of mollusks, corals, baruacles, and other creatures which they have cracked, swallowed, and cleansed of their soft tissues by digestion We have learned from Darwin of the marvelous work of the earth-worm in Britain. The ejectamenta of a single fisln of moderate size in one day would far exceed the accumblations of many earth-worms for a much longer time. Now, in examining critically large quantities dredged from the bottom, I have found the material from certain areas almost entirely composed of these ejectamenta. In the interstices some small creatures hide, but the tooth marks of the fish were upon nearly every fragment. As, for a pint of fragments of a given species, this bottom stuff would rarely contain half a dozen specimens which had been taken alive by the dredge (most frequently the species did not occur at all living in the material so dredged), it was obviously impossible that the shells could have been
captured and afterward voided on the same spot. It seemed more likely from all the facts that these fishes, after feeding to repletion, repair in large schools to certain areas to enjoy the pleasures of digestion. There would be nothing improbable in the fish of a limited region preferring some special locality for this purpose, and the result might be the accumulation of a veritable bank, of which nearly the whole had at some time or other passed through the intestine of a fish. At all eveuts, whatever explanation be offered of them, it is certain that such accumulations do occur at certain localities, as shown by the dredgings of the Fish Commission off the eastern coast of the United States.
The last condition remaining to be considered is that of the food supply. It has long since been pointed out that marine vegetation ceases to exist within a limit of 600 feet below the surface. Whaterer light exists in the depths it is not of a nature to meet the needs of vegetation. Whether any other factor joins with the absence of light to discourage algal growth is yet unknown, but not intrinsically improbable. The mollusks which belong to groups known as phytophagous in shallow water, in the deeps appear to live chiefly on foraminifera which they swallow in immense quantities. The results of this diet are evident in the greatly increased caliber of the intestine relative to the size of the animal, in the diminution of the masticatory organs, teeth, and jaws, and in the prolongation of the termination of the intestine as a free tube to a length which will carry the faces out of the nuchal commis. sure, and thus free from their injurious effects the branchial organs, which are usually seated in this space. The quantity of nutriment in the protoplasm of foraminifera is so small that a moch larger mass in proportion of these organisms must be swallowed, and their remains consequently ejected afterward, than if the food cousisted of the tissues of algæ.

But the great mass of abyssal mollusks are members of those groups which in shallow waters are normally carnivorons, and to a great extent prey upon one another. In the deeps, however, this reciprocal destruction is unuecessary.

Those who hare become familiar with surface collecting on the sea, alone can realize the immense quautity of organisms wheh exist in the water on or near the surface. These are frequently numerous enough to reduce the water to the consisteney of soup for miles in extent and to a considerable depth. Millions of these creatures are constantly sinking from the region where they naturally belong, either from injury or exhaustion, and thus raining slowly but constantly upon the bottom. This fact is not new and is admitted to be unquestionable by all hiologists. Hence in many regions of the sea bottom the resident fauna hare, as it were, only to lie still and hold their mouths open.
Une of the facts which attracted my attention when I first began to study deep-sea mollusks was the singularly small number which showed signs of having been drilled or attacked by other mollusks. Apart from
those showing the marks of fish teeth, or the dental machinery of echinoderms, it is extremely rare to find drilled bivalses or mivalses such as make up the great mass of the jetsam on every sandy beach. Such cases occur, but the occurrence is always exceptional and the holes which are most often found in abyssal shells are those which are dne either to the friction of some hermit crab or to the erosive properties of the secretions of certainannelids which fix their irregular tubes upon the outer surface of the shell. These imjuries can not easily be confonmele 1 with the cirenlar itrili-holes of carnivorons gastropods. Having handed more deep-sea mollusks than any other naturalist now living, and spent, probably, more time over material procnred by the iredge from shallow water than any one else of my acquaintance, I do not feel that I am presumptnons in affirming the remarkable difference which obtains in this respect between the dead material from the Litoral and from the Extra-Litoral Regions, respectively.

This brings me to a conclusion which I have elsewhere published with less detail. The anmals belonging to the mollusea which are foun I in the Arehibenthal and Abyssal regions, especially the latter, do not live in a perpetnal state of contlict with one another. A certain amome of contention and destruction donbtless goes on, but on the whole the struggle for existence is against the pecmliarities of the enriromment and not between the individnal mollusks of the area concerned. It is an imbinstrial communits, feeding, propagating, and dying in the persons of its members, and not a scene of carnage where the strong preys mpon his mollnscan brother who may chance to be weaker. Depredations on this community are donbtless committed by deep-sea fishes and echini, perhaps by other organisms, but the inroads are not so important as to serionsly modify the course of evolution and influence specific characteristics.

Hence the course of evolution and modification, though still complex, is certainly much less so than in the shallower parts of the ocean. For this reason we may hope to penetrate more deeply into its mysteries with deep sea animals than with those less fortmately situated. In this opportunity, it seems to me, lies the chief importance of research into the biology of deep sea mollusks. Nowhere else may we hope to find the action and reaction of the contending forees less obscure, and modification in most cases has not extended so far that we can not compare the deep sea forms with their shallow-water analogues and draw valuable conelusions.

While we are not yet in a position to formulate conclusions covering all the details of abyssal mollusk-life, in certain instances results suggest themselves.

Deep-sea mollusks, of conrse, did not originate in the deeps. They are the descendants of those renturesome or unfortunate individuals who, by circumstances carried beyond their usual depth, managed to adapt themselves to their new surronndings, survive, and propagate.

Many speeies must have been eliminated to begin with. Others more plastic, or more momerons in individuals, surrived the shock and have gradually spread over great areas of the oceanic floor. In accordance with these not mureasonable assumptions we should expect to find, at least among the newer comers, some sharacters which were assumed under the stress of the struggle for existence in the shallows, and wheh, throngh specific incrtia, have not become wholly obsolete in the new enviromment. We should also expect to find a certain proportion of archibenthal species in any given area, identical with or closely related to the analogons Litoral Region forms of the adjacent shores.

In the Abyssal Region alone should we expect to find that any considerable proportion of the fama has lost all its litoral eharaeteristies, assmmed characters in keeping with its environment, and become disseminated orer the ocean bottom thronghout a large part of its extent. These expectations in the main are fairly satisfied by the facts as far as the latter are positively ascertained.

With the lesser need of protection from enemies and competitors would necessarily be related a less vigorous elimination of characters which in struggle and competition might prove somrees of weakness. The limits of minjurions variation would be relaxed at the same time and to the same extent. We find, as we should expect, that the deep. sea mollusks are more variable in their ornamentation and other superficial characters than those from shallow water. In some species the balance of characters is fairly well maintamed, in others variation runs riot, aud it is impossible to say what amount of it should constitute a basis for specifie sublivisions among individuals.

In general, deep-sea shells present pale or delieately tinted color-patterns, are white or owe their color to the tinting of the epidermis. This may be dne directly to the absence of light. Smlight, when present, seems to have a stimulating effect in developing colors as is shown by the greater brightness of tropical litoral shells whatever their colors. It operates indirectly by promoting the development of color in alge which are fed mpon by phytophagons mollusks and affect the coloration of the latter directly through the assimilation of the coloring matter of the food, mechanically. Indirectly, through the influence of protective mimicry, the coloration of shells which frequent beds of serweed or rocks covered with stony alge is often modified in harmony with the enviromment eren when the speeies is not phytophagons. In the deeps these inflnences are wanting, and the development of color is necessarily the result either of meradicated hereditary tendency, or of some physical features of the environment which operate mechanically and are not yet understood.

The colors chietly affected by deep-sea mollusks are pink or reddish, straw-color, and varions shades of brown. These are found in the shell and are more or less permanent. The epidermis of deepsea shells is usually pale yellowish, but frequently is of a delicate apple green such
as is seen in many fresh-water species; and sometimes of a beautiful rich dark chestnut-brown, a coloralso not rare among land and freshwater species. The most common pattern when any exists is that formed by squarish dark spots, which oceasionally become fused into bands. Among the archibenthal species found in depths from 100 to 300 fathoms this pattern of brown squarish spots arranged in spiral series is notable in such forms as Scaphella junonia, Aurinia dubia, Halia priamus, Conus mazei, etc. Instances of the green epidermis are afforded by the various species of Nuoulide, Turcicula, and Buccinide.

The thick and solid layers of aragonite, of which many shallowwater species are chiefly built up, are represented in deep-water forms by much thinner layers, while the nacreons layers are, if not more solid in abyssal shells, at least more brilliant and conspictions, perhaps because less masked by aragonitic deposits. A very large proportion of the deep-water shells are pearly and derive their beanty from the brilliance of their nacre.

In the matter of sculpture the mechanical effect of the pressure operates against the development of weight and thickness in benthal shells since the whole must be permeable. It is probable, too, that the soft and sticky character of the abyssal ooze would put the possessor of an unusually heavy shell at a considerable disadrantage in getting about on the bottom. Any impermeable shelly structure on the ocean floor would have to be strong enough to sustain without ernshing a weight hardly less than that borne by the rail under the driving-wheel of an ordinary locomotise. It is sufticiently obvions from a mere statement of the case that none of them can be impermeable.

The heavy kuobs or arborescent varices of shallow-water Murices are represented in their deep-water congeners by extremely thin and delicate spines and slender processes. These are probably all reminiscences of shallow-water aucestors, as it is difficult to imagine any cause which in the abysses would lead to a development of such defenses de novo.

The sculpture most usual on deep water shells is of a kind which serves to strengthen the strncture, much like the ridges which give rigidity to corrugated-iron work, or the curves used by architects in wrought-iron beams. Spiral or longitudinal hollow riblets, a transverse lattice work of elevated lamine such as are developed for similar reasons on the frail larval shells of many gastropods, a recurvature of the margin of the aperture in forms which in the Litoral Region never develop such recurvature - these are instances in point.

Besides these there are small props and buttresses developed which serve the same purpose of strengthening the frail structure at its points of least resistance. Such are the garlands of little knobs so commonly found in front of the suture in abyssal shells of many and diverse groups.

It is not intended to suggest that the methods above indicated have
not been developed also in shallow-water forms and for similar reasons. The distinction which I would point ont is that in litoral species, as a rule, these devices are subsidiary to the much simpler course of strengthening the shell by adding to its thickness. In the abyssal forms, for reasonsalrealy explained, this mode is not practicable and consequently we have the one without the other. .The operenlum is generally horny in abyssal mollusks, frequently disproportionately small, comparel with that of congeneric litoral species, and in a remarkably large number of cases is absent altogether.

As might be expected of descendants vith modification, the resemblance is greater between the larval shells of benthal species and those of their shallow-water relatives than between the parts of the shell of later growth. There is one notable difference, however. In the deepwater forms the nucleus is frequently larger than in their litoral analogues. It would seem as if the condition of the depths were such that of a small number of large larræ more are more likely to surrive than of a large number of small ones; or at least that this form of reproduction is more useful to the species. These details will serve to show the multiplicity of facts to be acconnted for and the opportunity for adrancing science by a study of abyssal conditions and their effects upon the animals subjected to them. Without claiming any unique importance for the theories advanced in the foregoing remarks it may still be said that the subject is one of the very greatest interest. Perhaps experiments upon shallow-water forms, artificially subjected to pressure, may at some future time enable us to penetrate more deeply into the mysteries of life in the abysses.

It now remains to take up the collections made by the Albatross party on their royage.

Beginning the enumeration at Santa Lucia in the West Indies, and terminating it at San Francisco, California, it appears that the register of operations includes one huudred and forty dredging stations and forty anchorages, besides sundry surface collections. From the inspection of the collection of mollusks, which is almost entirely preserved in alcohol, it seems that mollnsks were collected in eighty of the casts of the dredge or trawl, and at twenty-seveu of the anchorages, llistributed as follows:

On the Atlantic coast of America and in the Straits of Magellan, sixteen stations and eleven anchorages are represented, of which eight casts were in water over 100 fathoms deep.

On the Pacific coast of South America from the Straits of Magellan to Panama and to the Galapagos Islands mollusks were collected at thirty-nine stations and twelse anchorages. At eleven American stations and three near the Galapagos Islands the depth was over 100 fathoms.

On the Mexican and Central American coast north of Panama mol-
lusks were ohtained at twenty statious and six anchorages, none of which were iu more than 100 fathoms.

Lastly, on the coast of Califormia at five stations, of which two were in more than 100 fathoms, and at three anchorages, mollusks were collected.

Altogether the dredgings on archibeuthal grounds amounted to tweuty-four, all told. The mollusk collection made at these stations was rery small in bulk, though important in its nature.

The collections can be roughly divided into two classes. The first, from the Litoral Region, is of value as indicatiug the distribution of the species, and as affordiug rare specimens with the soft parts in condition for study. The full value of this part of the collection will not be evident until the whole has been thoroughly studied, compared, and named, which will necessarily be a work of considerable duration.

The second portion of the collection is that containing the deep water species whose interest is of a wider sort, for reasons already discussed. Being so much smaller in buik it can be readily handled and discussed, especially in connection with previous work done in the region between Chesapeake Bay and the not thern shores of South America.

I shall therefore in this report, which is arowedly of a wholly preliminary nature, confine my attention chiefly to the deep-sea forms of both oceans and the Atlantic shallow-water species; combiniug with those collected on the rosage from ocean to ocean a fem, obtained by the Albatross in previous work on our southeastern coast, which naturally fall into the same category, and including with the merely descriptive matter a discussion of some points in regard to the anatomy and biography of these species. A suppiementary report on the shallow-water forms of the Pacific collected on the royage is in preparation by Dr. 1. E. C. Stearns.

In a geueral way, before dismissing the shallow-water collections from consideration, I may point out that the collections from the eastern shores of the two A mericas are of great value as extending our knowledge of the geographical distribution of many species. Thus we find that a good many of the forms common to the shores of Florida and the Gulf of Mexico, as well as the Antilles, extend to the Abrolhos Islands or even to Rio Janeiro, while, mixed with them, are a few which seem to find their normal geographical center uear the sonthern extremits of Sonth America. Un the west coast of South America the shore collections offer nothing unexpected and the collections from the shores of the Galapagos Islands are nufortnately meager. Those from moder. ate depths of water off the coast of Lower California, on the other hand, show glimpses of a faumapparently as rich as that of the Antilles and which has so far been little investigated.
The archibenthal fama off the coast of Alta California, like that off the shoals of Niantucket and Martha's Vineyari in New England, shows an almost entirely distinct facies from that of the shallower water near
the shores, and in the future will donbtless afford a rich harrest of novelties to the naturalists who investigate its treasures. The present contribution to that branch of the subject is a mere begiming in a line which promises rich results when more effectively explored.

In conclusion I would express my appreciation of the facilities offered by the authorities of the Fish Commission, the National Museum, and the Smithsonian Institution in the preparation of this report.

NOTES ON THE SPECIES COLLECTED.

Class BRACHIOPODA.

The collection of Brachiopoda made on the royage was small and of little interest. Only one species, represented by two specimens, was an addition to the Museum collection. The localities and data have a certain value for students of the group.

Family EUDESIIDA.
Eudesia venosa Solander.

This species was obtained from latitude 45° south, off the east coast of South America, hear Point Malaspina southward to Magellan Straits, in 20 to 80 fathoms, the temperature varying from 47° to $57^{\circ} \mathrm{F}$. The station numbers were $2769,2770,2752,2775,2777,2775$, and 2779 .

Eudesia fontaineana Orbigny.
Terebratula fontaineana (Orb. Voy. Am. Mer., v., p. 675, No. 782, ix, pl. 85 , figs. 30, 31. Waldheimia renosa (pars) Dall, Proc. Acad. Nat. Sci., Phil., p. 183, 1873, not of solander.
Hab.-Station 2783, off the west coast of Patagonia, in south latitude $51^{\circ} 2^{\prime}$, in 122 fathoms mud; bottom temperature $47^{\circ} 0.9 \mathrm{~F}$.

This interesting species appears to be very rare; the only other specimens I have heard of are the original types of Unbigny, in the Paris Museum, which I have never seen. His figure is excellent, but raber too intlated, which led me in 1873 to reter the species, though with some doubt, to E. venosa as a synonym. An examination of the present specimens leares no doubt of the ralidity of the species. Externally it much resembles a large, smooth speeimen of Terdratulina cuputserpentis var. septentrionalis. The ramifications of the sinuses are white amd form two blunt rather short chamels on each side of each valve. They have no small attenuated divarications as m. venosa. The exterior is mostly of a russet-brown color, but this may possibly be extraneous. The soft parts and apophyses do not differ from the usual type in this genus.

> Terebratella dorsata Gimelin.

This species was, on the east coast of South America, not obtained north of sonth latitude 52 , near Cape Virgins, but elsewhere was assoeiated with E. cenosa and obtained through the same ravge of depth and
temperature at Stations 2772, 2775, 2777, 2778, 2779 and at various points in Magellan Straits.

Bouchardia rosea Mawe.
Special search for this species was enjoined in the instructions to the collectors of the expedition, as the soft parts are not yet known and the shell is very peculiar. The only results were the dredging of a number of valves and dead shells at Station 2762 , in sonth latitude $23^{\circ} 08^{\prime}$ and west longitude $41^{\circ} 34^{\prime}$, east of Rio Janeiro in 59 fathoms mud and gravel; bottom temperature $57^{\circ} .1 \mathrm{~F}$.

Family TEREBRATULID.E.

merebratulina cailleti Crosse.

This well known Antillean species was obtained at Station 2750, off St. Bartholomew, West Indies, in 496 fathoms sand, and at Statious 2752 and 2753 in 281 fathoms sand off Santa Lacia, the bottom temperatures ranging from $44^{\circ} .4$ to $48^{\circ} \mathrm{F}$.

Family LINGULID风.
Giottidia albida Hind..
This species was dredged in 5 fathoms mud, off the coast of Lower California, iu north latitude $26^{\circ} 42^{\prime}$.

Family CRANIID.E.
Crania pourtalesii Dall.
Hab.-Station 2,781 in sonth latitude $51^{\circ} 52^{\prime}$ west, longitude 73° 41^{\prime} on the west coast of Patagonia in 348 fathoms mud; bottom temperature $50^{\circ} \mathrm{F}$.

This species had previously been obtained only from the Florida reefs and in the Antiliean region in deep water. The diseovery of it at the present locality not only carries it sonthward to the Strats of Magellan but to the western coast of South America, where this genus has not hitherto been known, either as receut or fossil.

Class PELECYPODA.

* GENERAL CONSIDERATIONS.

The attempt to divide the class Pelecypoda or Lamellibranchiata into orders has so far been unsuccessful, or, at least, the subdivisions adopted have from time to time been found unsatisfactory ou account of the discovery of forms which combine in their organization characters which had previously been regarded as diagnostic ot important subdivisious, such as orders.

This has resulted from the selection of characters as diagnostic which are not really fundamental in the evolutionary history of the minor
groups. As we gradually become acquainted with the mutability of the adductor muscles, the gills, the arrangements for retracting the siphons and other factors in the mechanics of these organisms, the classification based upon their mutations has gradually ceased to satisfy students, though one phase or another of it may still retain a place in ordinary text-books.

To cite a few examples: It will be remembered that the most persistent of the early systems for classifying these animals was based on the number of adductor muscles or the sears upon the shell by which they might be traced. At first the groups of Monomyarians, or forms with one adductor like the oyster, and Dimyarians with two adductors, like the ordinary edible clam, seemed sufficiently well distinguished. Later when transitional forms like the mussel and its allies were carefully studied, a new group, Heteromyaria, was erected for those which would not fit into either of the others.

But when it is considered that there are forms like Dimya, in which with a monomyarian organization two distinct adductors are found, one at each end of the shell; that in Chlamydoconcha we have a specially modified ani.nal with no adductors at all; that in Mulleria we have the young (not larval) animal typically dimparian ret becoming in its adult stage as typically monomyarian in its muscular apparatus as an orster; then it is sufficiently erident that better and more fundamental diag. nostic characters should be found or the so-called orders given up.

Again, an attempt has been made to use the characters of one of the most mutable parts of the whole organism, namely the gill, as a basis for primary divisions of the group. I have shown elsewhere, I venture to think conclusively, that this selection is ill-advised and can not successfully solve the problem.

The simplicity or simation of the pallial line has been regarded as a character of high importance and has heen nsed as diagnostic of divisions of primary importance. I have recently shown that, in certain groups, long siphons may exist with a simple pallial line, as in Cuspidaria; that in species withont long siphons, members of the same family Poromyide, and perhaps of the same genus, may show a simple or a strongly sinuated pallial line according to the modifications of certain moscular elements which certainly can not be claimed to have any high systematic importance.

The question is further complicated by the fact that certain characters which in general are indicative of sery early evolutionary divergencies, may be simulated or assumed as very modern special modifications bronght abont in animals of diverse groups by natural selection under the influence of sprecial cincumstances. Species thus modified will very naturally be classed with those who bear the same or similar characters as the early result of very ancient ancestral divergencies, and, as a consequence, other characters not harmonizing, the systems are thrown into confusion. These are the difficulties among which the sum total
of the organic characters must be our guide in attempting to decide. Only too often we may find, as knowledge increases, that our first judg. ment was more or less in error.

In reflecting upon the origin of the complicated mechanical arrangements in bivalves which we call the hinge, I have come to the conclu. sion that here, as in the cases of the mammalian foot and tooth, elaborated so clearly by Cope and Ryder, we have the result of influences of a mechanical nature operating upon an organ or apparatus in the process of development.

The hinge of a bivalve, reduced to its ultimate terms, consists of two more or less rigid edges of shell united by a flexible membrane or ligament.

The ligament may be wholly exterual or may be supplemented by an internal addendum (called the cartilage), which exerts a stress in the same direction, within certain limits. The movements of the linge are dependent upon the elasticity of the ligament and cartilage and upon force exerted by one or more addnctor muscles connecting the valves.

The rigid edges or cardinal margins of the valves may be simple or modified by the presence of interlocking processes, known as teeth, whose purpose is to regulate the direction of the valres in opening and closiug.

There are three fundamental types of hinge: (1) The simple edentulous margin closing by simple apposition of the edges of the two valves; (2) the hinge in which the teeth are developed in a direction transverse to the cardinal margin; and (3) the hinge in which the direction of the teeth is parallel to the margin.

The mechanical features of the second and third types may be more or less combined in a single hiuge, but the affinities of the particular form in which this may occur are usually not difficult to determine on a general survey of all its organic characters.

I am disposed to think that the time relations of the different types are those of the order in which I have cited them; the most perfect hinge, morphologically speaking, would be oue which should combine the most effective features of the second and thied types.

The architypal form of bivalve may be imagined as small, with nearly equilạteral, symmetrical, subcircular valses with edentnlous cardinal margin and a short external ligament nearly central between the umbones. This is the character of many larval biralves at the present day, though it is probable that many of the forms now edentulons in the adult state, have passed through an evolntionary stage in which they had a more or less denticulate hiuge margin, while their present conditiou is one in which the hinge has diminished in complexity, or, in other words, undergone degeneration.

Very few of the earliest known bivalves appear to have hinge teeth, though this may be on account of our imperfect knowledge of many of them, since they are ofteu represented by fossils in which no evidence
of the linge structure is discernible. It is highly probable that the evolution of hinge teeth closely followed the differentiation of the Pelecypod class.
The first bivalves are all minute, as far as known, when compared with a majority of their descendants. They are usually Dimyarian, as I assume the architype to have been. It is highly probable that they possessed a developed foot and that their gills were either lamelliform on either side of an arterial stem, as in Nuculf, Solenomya, and many Gastropors, or filiform, as in Dimy and certain Pectens. The siphons were probably little developed and the lobes of the mantle rather widely separated, or perhaps entirely free.

As long as the shell remained small and snbglobular the ligament short and wholly internal, the imperfect character of the hinge was of less importance. With the essential difference betreen the anterior and the posturior halves of the animal, and especially with any material increase in the magnitude of the adnlt, more or less discrepancy would develop itself between the two ends of the shell, the subglobnlar form would disappear, and certain other consequences wonld follow. Either the ligament must increase with the size of the shell and become longer or its power would become inadequate for the proper performance of its functions.

Here I will turn aside for a moment from the direct line of argument to describe the mechanical relations of ligament and shell, a proper understanding of which is very necessary to the comprehension of the whole question.

With a wholly external ligament the operation of the valves is that of two appendages to the free ends of a \mathbf{C}-shaped spring. The action of the muscles in pulling the valves together inchades the bringing nearer to each other of the two extremities of the ligament, which the latter by its elasticity resists; consequently the opreration of the ligament is in the direction of opening the valves to a certain distance. Beyond this distance the separation of the valves tends to compress the ligament, which again resists, and therefore beyond the normal distance of separation the action of the ligament tends to prevent the valves from opening. This very simple matter may be observed by any one who will examine an ordinary clam with the ligament in fresh condition and whose adductor muscles have been severed,

When the liganent, in larmony with the elongation of the cardinal margin, becomes elongated it must be either straight or angulated. For obvious reasons a ligament forming a curve or the are of a circle is mechanicaily impossible. This any one can prove to their own satisfaction by putting two light wooden saucers edge to edge, convexity outward, and attaching a leather or paper ligament by cement. A cmred ligament, when the valves open, will tear or break at once either itself or the edge to which it is fixed. In other words, the axis of motion of the hinge must be a straight line. If any part of the ligament diverges
from the axial line it must cease to take part in the axial motion and must be capable of stretching to an extent which will nentralize its angulation, or it will be broken or torn away. But if the thickness of the ligament increases ventrally, as may be the case, when it is situated between the valves rather than as an arch above them, a certain portion may extend to and beyond the axial plane in a downward direction. The portion thus projecting will then partake of the axial motion in an opposite sense to that portion which remains above the axial line. It will be compressed when the latter is stretched by the closing of the valves and will expand as the opening of the valves allows the external portion to contract. This change may be brought about by a downward angulation of one end of the ligament (as in Solenomya) or as a simple downward growth, which may he central as in Neilonella or Galcomma). The former mode may be the result of an angulation of the hinge margin consequent on elongation or ventral extension. Its result is to separate a longitudinal segment of the original ligament, which may be totally detached or remain physically connected, while in either case its mechanical function has undergone a reversal of direction.

The second mode likewise removes a segment, but in a vertical direction. This segment may be physically continnous thronghont its upper portion with the lower portion of the superjacent ligament. It may be wholly detached, or it may be attached by one extremity while the other is separated. In the last case its direction will be oblique, or at an acnte angle with that of the original ligament. This detached segment, whatever its position, has always similar mechanical relations to the movement of the hinge, and is called a cartilage. The separation of the cartilage from the ligament is generally either central or toward the shortest end of the hinge, which is usually the anterior, owing to the fact that when the size of a lamellibranch increases, the siphous, the ovaries, the visceral mass, or the gills are the organs where proportionally increased growth is most likely to occur, and these are usually central or posterior to the umbones. In Solenomya, which is exceptional in having a posterior cartilage, the posterior portion is the shortest.

The amonnt of shifting required to put part of the ligament on the rentral side of the axis of hinge motion, or cardinal axis, is extremely small. All stages of the changes involved may be observed in the Nuculacea, even to one, not hitherto mentioned, where the cartilage has been developed and has subsequently become obsolete or altogether disappeared (Malletia), while leaving some traces of its former presence in the shape of an empty and degenerate fossette (Pleurodon). It is noteworthy that this suborder, which gives us so many hints as to processes which we may imagine to be of great antiquity, should, on other grounds, be regarded as among the few which best retain traces in the soft parts of archaic stages of development.

With the lengthening and angulation of the cardinal margin the lig. ament gradually shifted to a point where it became posterior to the beaks. Perhaps it would be better to say that the portion in front of the beaks either became segmented off as a cartilage, or became obsolete and vanished, while the portion on the posterior side gradually elongated, as the elongation of the posterior hinge-margin rendered a longer ligament more useful. It has already been pointed ont that a curved ligament would involve stresses leading to its own destruction. The curvature of the cardinal margin, now the common property of a vast majority of bivalres, was inevitable with inerease in size and asymmetrical development of the anterior and posterior ends of the body. Consequently, that the ligament shonld be shifted was a mechanieal necessity unless the evolntion of the gronp was to be confined within extremely narrow limits as regards hinge characters.

The infolding of the ligament, and the development of a cartilage and its supports, would be especially likely to oceur in forms with a thin edentulons hinge, where the least shifting would be necessary (Solenomya, Anatina), rather than in those with a broad, flat hinge margin. In harmony with this proposition, we find the archaic forms, with internal cartilage, have generally a narrow edentulons cardinal boruer, the exceptions belonging to the more recently snecialized types (anctra, Spomdylus), while the groups without an internal cartnlage contain the broadest and heaviest types of hinge (Pectunculus, Veneride).

The infolding of a eartilage which arose by longitudinal segmentation would leave a line of weakness in the arch of the umbones. In thin shells with strong adductors there would be a tendency to fracture here. This singular feature has been perpetnated in what may be termed the normal umbonal fissure of Solenomya, Periploma, and similar forms. Traces of it are evident in Thracia, while the unfractured suture itself is risible in Isocardia, Pachyrisma, and Pecchiolit,

In the thin-shelled C'uspidariide a special buttress is otten developed to support the shell at this weak point. In the Isocardiilise an independent cartilage was possibly never developed, but the infolding of the anterior part of the ligament went far enough to leave permanent traces on the shell. That it did not resmlt in a cartilage, if this was the case, may possibly be due to the fact that, owing to the great size and spiral character of the umbones, the anterior part of the ligament was turned up instead of downward, and therefore did not tend to shift toward the interior. If it is not elear how the thickening or vertical extension of the ligament below the cardinal axis should cause its separation into two parts, I need ouly reeall the familiar experience of every one in breaking off a wire or piece of tin by bending it back ward and forward on the line of the desired fracture. The mechanical prineiples and results in the two cases are precisely similar.

When finally developed in the same individual the ligament and cartilage work in identically the same manner but in different directions.

The resistance of the ligament to compression prevents any straining of the adductors by a too wide opening of the valves. The same resistance in the cartilage prevents the ventral margins from ernshing each other by sudden and violent contractions of the adductors when the animal is alarmed and closes its valves. The nympha, or processes to which the ligament is attached, and the fossette or socket of the cartilage have been strengthened and regulated by the development of various buttresses and other devices, varying in different gronps. The cartilage in turn has its rigidity and strength increased iu many species by the special development of shell substance known as the ossiculam.
To return to the development of the cardinal margin. The asymmetry of the shell and ligament, relative to a vertical transverse plane passing through the nmbones, would be promoted not only by the natural discrepancies between the anterion and posterior halves of the body, but by the mechanical effest of the projecting umbones. Where a shell opens laterally in the strict sense of the word, unless the beaks are very incouspicuous, or are separated by a wide projection of the cardinal border (as in Arca noce), they will strike against and wear ont one another. This abnormal or accidental result is rery constantly observable in many Anutiside, sach as onr own Thracia conradi. But it must be a source of weakness and danger to the animal. If the ligament is shifted posteriorls, the ralves must open more obliquely, with the result that this dangerous friction will be avoiled in most cases.

In a protective armor like the valves of bisalves, other things being equal, it will be obvionsly beneficial, if not absolutely essential, that it should offer as few weak joints or open spaces as possible. Burrowing amimals, who serve themselves of their burow as a supplementary defense, mily be able to perpetuate gaping shells and exposed sipions without serions danger from their enemies. Those animals which burrow but slighty, or live in material which enemies may also easily penetrate in their forays, will unguestionably benefit greatly by an acenrate and exact closure of the valres. The intrusion of solid bodies can be to some extent guarled against by the action of the cilia or processes of the mantle margin, but such intrusion would be greatly facilitated by any organization of the hinge which wonld permit an iudependent rocking motion of the valves with respect to each other. The sudden closing which danger incites leaves no time for clearing ont obstructions, and the gap is especially liable to the incursion of gravel, etc., in species which live with the plane of jnnction of the valves in a vertical direction. In certain brachiopods, such as Glottitlia and Discina, such a semirotary motion of the valves exists, but is less dangerons to them since the plane of juncture with them appears to be generally horizontal.

To avoid these dangers and to guide the motion of the valves in closing and to prevent their sliding upon one another after closing, nature through natural selection and physical stresses has developed these cardinal processes which are bnown as teeth.

Attention has already been called to the fact that there can be but three fundamental types of hinge, which may be called the anodont, prionodont, and orthodont, the latter term being used to indicate the forms in which the cardinal margin has become longitudinally plicate. Actually the pure orthodont type hardly exists; in nearly all forms traces of the prionodont characters are mingled with it. For those forms, in which the archaic anodontism still persists as the characteristic of chief importance, though frequently modified by special meehanical contrivances which to a certain extent mask the type, I have proposed the term Anomalodesmacea. The fossette, cuileron, or spoon-shapet process for the cartilage is a separate development, serring a special purpose. Thongh influencing the teeth, if any exist, in its viciuity, it must not be confonnded with them. The weakness of the anodont type has left an opening for the specialization and perfection of this process, which, to a considerable extent, iu this group, assumes the functions which in groups without a cartilage are the special office of the teeth.

For those forms in which transverse plieation of the hinge is the chief characteristic, though rarely wholly exclusive of the orthodont influence, I have used the term Prionodesmaccu. In some cases what may seem to be the chief features of the hinge as regards size and strength are orthodont, yet these I believe to be comparatively modern specializations illustrating the general tendency of evolutionary processes toward a teleodont hinge. In cases of donbt the sum of the characters will euable us to decide on a proper place for a given genus. It must not be supposed that, because the names suggested by a single set of characters are used to denominate the proposed orders, therefore that set of characters is to be our sole criterion. Such too hasty assumptions are a relic of the days when the immutability of species was an orthodox dogma in biologr, and doom to failure any system founded upon them.

For those forms in which the rarions types of hinge have become harmoniously combined, though in varying proportion eontributing to the final mechanism, I have selected the designation of Teleodesmacea. These may be regarded as the highest and evolutionally the most perfect in type of hinge, though this perfection shows itself in a rariety of forms. Priongdont traces remain with most of them, but are never characteristic of the type.

The three groups I propose to call orders. It is difficult to say whether they can be compared in systematic value with orders in other classes. All that can be said is that these three divisions are discernible in the very compact and homogeneous class which includes them, and it contains no other gromps of equal ralue or signifieance.

Each order as it now exists contains archaic and modern specialized types. Each indicates a tendency toward an ideal of fitness to the environment, which results in a certain parallelism of minor characters
common to minor groups in each of the three orders. In each (we are coming to regard it as inevitable) certan members show affiliations with members of the other orders. In each there are certain gromps which represent a relatively modern spectalization carried so far as to be quite peculiar.

Pearliness or a truly nacreous character of shell-substance is a source of weakness. This kind of shell is more fully permeated with animal matter, is more liable to decay and exfohation, and is more readily drilled by enemies than the aragonitic trpe of shell-substance which conchologists eall porcellanons. The external mismatic layer which usually accompanies a pearly intetior layer, as in Nucula, Trigonia, Unio, etc., is very easily disintegrated. The temdency of evolution is to promote the porcellanons type. The older groups (Prionodesmacea and Anomalodesmacea) contain all the pearly Pelecypods. Among the Teleorlesmacea there is not a single one. Furthermore, in the two former orders the most specialized and, developmentally, the most modern forms are preferably porcellanous; those which we may reasonably regard as of more ancient type tend to pearliness. For example, in the Anomalodesmarea the most striking instances of specialization are the Pholads, Tubicole and certain Myacca, all are earthy, or at least not pearly. The Anatinacea, which paleontologieally are very ancient, are largely pearly. The Prionodesmacta have few porcellanons groups, but those which show this character, such as Ostrea and Pecten, generally stand at the nearer end of a long line of progressive modification. There are exceptions to this, such as Tindaria, in the Nuculacea, which is obtrusively porcellanons. Leda and Solenomya, which retain so many archaic features in their soft parts, have almost lost the pearly layer while still falling short of the porcellanons character conspicuous in most of the Teleodesmacea. The Arcas, couspicuonsly earthy in their shells, are modern in their total characters compared with the pearly Nuculas. Turning to Gastropoda for a moment, we find that Pleuroto. maria, one of the very earliest types of that class which can be recognized in the now existing fauna, is extremely pearly. On the whole, the relation between the two types of shell-substance if not constant enough to be called a rule, is sufficiently so to be extremely suggestive.

I have already suggested the mechanism of the infolding which resulted in the cartilage and its supporting socket. It is a very difficult task to account for the initiation of all the types of teeth. A few sug. gestions may be ventured upon.

The radiating or transverse corrugations which we see in ribbed shells are not merely ornamental. They serve to add strength, while they do not increase the weight, as would a corresponding thickening of the shell. A familiar example of the same principle is afforded by the corrugated sheet metal so frequently used by builders. The ends of these ribs impinge on the margin of the shell and crenulate it when the shell is thin. Crenclla is a notable example. Many Mytilacea ex-
hibit a similar structure. These crenulations of the linge-line and margin are not to be distinguished from nascent teeth, and have frequently been described as such by naturalists. Nuculocardia of Orbigny is a well-known instance. The crenulations of the margin are useful in securing a close fit between the closed valves, whether at the cardinal or the basal margin. But they would be more useful at the eardinal margin, beeause there they would prevent siding of the valves upon one another before they were completely closed, as do the long teeth of the Nuculacea. Hence it is probable that they would be perpetuated and specialized there even if the ribbing disappeared from the exterior of the valves. Great stress arising from friction and pressure resisted would tend toward the thickening, widening, and even buttressing of the cardinal margin until the hinge-plate became developed and sufficiently strong to perform its functions with success. This is one of the ways in which a Prionodont hinge might be initiated.

The Anodont hinge, to reiterate, is a weak and unsatisfictory type. Its defects could hardly continue to exist except in a burrowing and tubicolous generation. To some extent its weakness has been made up for byan asymmetry in the valves, which permits a smaller valve to fit into a larger one. This is a very successful device, as there can be, as long as the larger margin remains unbroken, no question of failure to close the valves. But the projecting margin of the larger valve is a weak feature, much more likely to get fractured than the convex combined edges of two. Once fractured, the mollusk would be defenseless until he could mend the breach Moreover, in moving about-a practice more common with Pelecypods than is generally realized-the asymmetry of the valves would be a nuisance, always tending to shift the traveller out of the line he might desire to take. We find, as we should expect, that the Anodont hinge is persistent with tribes which are borers, tube-dwellers, or burrowers-for the most part very sluggish creatures. In cases where the ventral margins of the valves do not meet, there is, of course, no especial call for a dentiferous hinge, as the ralves play the subordinate part of a dorsal shich. This is the case with Solenomya, where the ventral hiatus is partly shielded by projecting epidermis. Most of these forms depend apparently quite as nuch on their activity and the protection of the walls of their burrow as they do on that afforded by the valves of the shell. A reversion of the process is seen in the case of some groups, like Anodonta, in which the edentulous hinge is the result of degeneration from a dentiferous type, such as Unio. The dentiferons forms retain their teeth in the streams and rivers, where they are subject to numerous casualties and much knocking about, while in the still water and soft mud of silent ponds the teeth vanish and the protective shell reaches its limit of practicable tenuity.

One type of "cardinal" (as opposed to the so-called "lateral") teeth would arise throngh the modification of an Orthodont or a Prionodont

Proc. N. M. S9—— 16
binge at one end (as in Macrodon), so that part of a row of teeth originally similar would come to differ from the rest. Many Nuculacea show stages of such a mode of change.

Another type wonld arise from the plications of the hinge parallel to and induced by the formation of a fossette or process for the internal cartilage. Such teeth or plications may be observed in most Pelecypods having an internal cartilage. All stages in development of this type may be observed from the barely traceable parallel ridges of Cuspidaria, for instance, to the highly specialized cardinal teeth of Mactra.

Thus, it will be observed, the teeth called cardinals in Pelecypods are by no meaus all necessarily homologons, and it is even conceivable that cardinals of both types might come to be united in the same hinge.

The development of lateral teeth from transverse teeth is a very easy process, of which a full exhibit might be made by arranging in a contimous series the valves of selected A reacea and Nuculacea. It is probable, however, that not all Orthodont dentition originated in this way. The thickening of the cardinal margin rendered necessary by the stresses involred in the mechanical operation of cardinal teeth or strong external ligaments would render parallel plication of the thickened area along the margin not only easy, but almost ineritable in some cases. The infolding of the edge of the mantle necessarily accompanying the production of a strong specialized socket for an internal cartilage would lead incidentally to occasional deposition of shelly matter in ridges parallel with the longer edges of such sockets. The greater efficiency in guiding the valres to effective closure in proportion to the increased distance from the umbonal region of such interlocking plications would tend throngh natural selection to the perpetuation of favorable variations and to their gradual removal farther and farther from the beaks until the most useful distance was attained.

When we consider the remarkable uniformity in hinge characters attained by the species with more perfected forms of hinge, through long series of individuals, it seems almost incredible that these results should he brought about by the action of a thin, soft film of secretive tissue which, unaided, could not hold itself erect. It is only when we remember that the result, in the main, is brought about through the action and reaction of certain definite mechanical stresses, propagated through the hard valvular skelcton, and constantly imposed upon the softer tissues, that any adequate reason for the marvelous uniformity presents itself. There are certain groups, such as the Isocardiide, in which the hinge seems still to be in what may be termed a transition state. With these no such strict uniformity prevails. While the differences are not excessive, yet the hinge of each individual specimen compared with others of the same age will show individual characteristics, and the changes which the hinge undergoes in the same individual between adolescence and old age are greater than one would ordinarily find in
the whole membership of a species, say of the Venerida, taking all ages, above the larral stage, into account.

We may now proceed to consider the groups of which these orders should be made up.

To the Anomalodesmacea I refer the Anatinacca, the Myacca, the Ensiphonacea or Tubicole, the solenomyacen, and the Adesmacea.

In the first three groups or suborders we have forms whose relationship will hardly be questioned, embracing also some instances of the most remarkable specialization of characters. To refer to a few, I may mention Aspergillum, Clavagella, Cuspidaria, and Poromya, usiug these names in their widest sense.

From several characters of the gills and other soft parts paralleled in the Nuculacea, Solenomya was at first affiliated by me with the Prionodonts.* On mature consideration, while admitting that the last word on this subject has not yet beeu put on record, I am inclined to believe that this genus is an Anodont which has retained certain archaic features of the soft parts, and represents in the Anomalodesmacea a survival analogous to that of the Nuculacer among the Prionodouts.

From a very early period the Solenacea have been assoeiated with the forms now gathered in this order. Professor Verrill has called attention to the fact that Tagelus caribaus and its allies have the organization of Tellinacea, and I have remored them to the vieinity of Psammobia, in my Cheek-list of the Marine Shell-bearing Mollusks of the sontheasteru coast of the United States. (Bull. U. S. Nat. Mus., No. 37.) Butare the Solenidce to be left behind? After due consideration I can see no sufficient reason for such a course, and conclude that the united siphous and burrowing habit, with its resulting specialization, do not warrant it. I have therefore exeluded them.

In the Adesmacea or Pholadacea we have the most remarkable specialization of the hinge known in the whole class. The relations of the parts are best understood by a study of the open-shelled forms like Zirpheca crispata or Barnea costatat and the young of the closed Pholads. In the adult forms of the latter, specialization has proceeded so far that the true relations of the parts are more or less masked. In Barnea costata we have the anterior dorsal margin of the ralves reflected dorsally until the anterior adduetors following the shell pass the axis of motion of the hinge and pull at the short end of the lever, tending to open the valves, instead of to close them. The posterior adductors pull in the normal way and balance the anterior ones. The ligament is reduced to an ineffective film. The cartilage remains as a survival, but reduced to such dimensions as to be practically of no use. Its elastic properties are lost and it merely serves to connect two little processes, the feeble remuants of the original fossettes. An appendage analogons

[^0]to and possibly homologous with an original ossiculum has (that view being taken) revolved around the cartilage, taken its place outside of the axis of motion of the hinge, and instead of keeping the valves from crushing each other by checking the closing stress of the adductors as in Verticordia or Bushic, and other Anatinacca, it accomplishes the same end by locking over the reflected edges of the shell on the dorsal surface, acting like the auterior adductors on the short iustead of the long arm of the lever, and, as before, in a sense opposed to the action of the adductors. Though greatly specialized and modified, fhis appendage retains something of the butterfly slape of a broad ossiculum.

An appendage, sometimes called the styliform process or apophysis, with its proximal end attached in the hollow of the beaks, has been homologized by Deshayes with the cardinal teeth. In Pholas costata it supports the posterior oral palpus, which is very massive, and some of the internal viscera. If one of the umbonal laminre of Callocardia were detached from its commection with the cardinal margin and allowed to project into the cavity of the ralse it wonld somewhat resemble the apophysis of Pholus. But on this view I am at a loss to explain the present connections of this process, about the derelopment of which little or nothing is known. How a cardinal tooth should come to be situated inside the mass of the body would seem to be hard to explain.

The enviromment of the Pholadis is of a very special character, and the modifications of the organization march with the peculiar circumstances under which it exists. To enter into their mutual reactions would take much space and obscure the more general questions to which these remarks are addressed.

It may be added that in this order, as well as the others, the particular constitnency of each of the suborders, even the number and scope of the families, must be regarded as tinged with uncertainty from the magnitude of our ignorance. To properly ascertain and correlate the data in regard to the different genera and the families of which they are the members is a labor worthy of devotion, but which will yet require a large amount of original research.
In the Prionodesmacea the Nusulacea represent an archaic type in many of their features. So far as the hinge is concerned Arca (now and related species) is perhaps the most fully and typically developed instance of Prionodont dentition. The Naiades declare in Spatha and Iridina their Prionodont origin, traces of which are to be seen in the transverse striation of the teeth of many species of Unio, even when lateral teeth have become well developed and pre-eminent. The same is true of Trigonia, which has many points in common with the Naiades and may perhaps be the descendant of a common ancestry. To the latter immediately Mulleria bears such a relation in its adult state as do the Monomyarian Pecten and Ostrea to the rest of the Prionodesmacea as a whole. The Prionodont character of the Mytilacea will not be
questioned. Throngh them we pasis to the Pectinacea, in which in Spondylus we have the finest instance of a Prionodont hinge with fer teeth, as Area is of one with many teeth.

The original transverse grooving of the hinge is risible on the very young ralves of many species of Pecten, Janiru, ete. The Ostracea are the last term of specialization in this line; the Anomiacen are bronght in by the total of their characters, thongh so far modified as to indicate little, by the hinge, of what I suppose to be their origin. Above all it must be admitted that the Monomyeria and Heteromyaria represent not fundamental types of structure but special modifications, though some of them are geologically ancient.

The remaining forms representing the march of progress toward a mechanical perfection in hinge characters, thongh retaining traces (as in the striated teeth of some Mactras) of Prionodont ancestry which once dominated the dentition, constitute the order Teleoresmacea.

In the main, in the combination of hinge characters which they present, the most striking featnres are the effective manner in which the orthodont laterals and prionodont cardinal teeth are subordinated to and supplement each other's action, the occasional introduction of the internal cartilage in happy combination with the others, and the general absence of a prismatic layer and of nacre in the shell-structure and of archaic characters in the soft parts.

It is a question whether the Rudistes are to be considered a gronp apart, or, like the Pholadacea among the Anomalodesmacen, merely an erratic special development of forms related to the Chumacea. Leaving the question to be settled by the special studies its difficulties call for, I conclude this paper with a tabular view of the orders and suborders into which the class is divided. One gronp, the Leptonacea, stands much in need of thorough study, without which its component families and even its permanent standing must remain donbtful. With our present knowledge it is yet impossible to determine the number of families of which each suborder should be composed, or eren how many groups are entitled to rank as families. But in the major groups I feel a certain amount of confidence that the present arrangement is in most respects more harmonions and in accord with the balance of characters than any of the systematic arrangements of the class which hare been hitherto proposed.

Supplementary note.-When I first began to consider the relatious of the teeth and other parts of the hinge I naturally remembered the brief abstract of the important paper on the hinge of bivalves by M. Nemmay r, which I had seen in the Zoological Record for 1883. I iutentionally deferred a careful perusal of Neumayr's essay until I had entirely completed my own. Then a careful examination of his original afforded me great pleasure. It showed that in the matter of the influence of ribling in promoting nascence of teeth; in the discrimination
of lateral plications, arising in comnection with the fossette of the cartilage from the trie cardinal teeth; in the influence of the enviromment on the degeneration of hinge characters ; in the estimate of the characters of the primitive bivalses, and some minor points, we had arrived independently at the same conclusions, and even illustrated them by identical or nearly identical examples. This is certainly strong presumptive eridence of the correctness of those inferences. In the points in which we differ it seems to me that the differences arise from the fact that Nenmayr has approached the subject more from the paleontological stand-point, and has less considered or has given less weight to biological considerations, not imprinted on the shell; while in my own ease, from the nature of my previous studies, I have been led to attack the problem from the other side. Recent investigations, arailable only since the date of Neumayr's paper, have thrown much light on the inoseulation of charaeters not before known to interlace. Neumayr, also, from my stand point, has insufficiently grasped the importance of the different processes involved in the production of the internal cartilage and its shelly coefficients on the one hand and the denticulation of the hinge margin on the other. These two processes, though they must often have proceeded simultaneonsly in the same genus, were not necessarily convected, except in so far as by resulting stresses each might react on the hinge-product of the other. So instead of haring a Desmodont type of hinge as opposed to a Prionodont, and, as Neumayr would say, a Heterodont (Teleodont) type, we may have either an Anodont (Paleoconch), a Prionodont (Taxodont), or a Teleodont (Heterodont) type of hinge, either with or without an internal cartilage and its accessories.

By the elaboration of this view, as attempted in the foregoing discussion, it seems to me the discrepancies so evident in Neumayr's system have been avoided, the types of hinges assigned their proper weight in the system, while those biological relations which are not fully reflected in the shelly parts have not been slighted; though inevitably numerous improrements in detail will suggest themselves to students, or be effected by a future expansion of our innowledge.

As regards the Rudistes, if, as claimed by Woodward and others, they possessed an internal cartilage, it is probable that they must form a specially modified and extraordinary ramification of the Chamacea. If, howerer, as is claimed by some authors, there was no internal cartilage or external ligament, no hinge, properly speaking, and the smaller valve simply rose and fell vertically under the control of adductor mus. cles, guided by interlocking processes, it is evident that this would establish an inter-relation between the valves, unlike anything among the Peleeypods, and only comparable, perhaps, with that of certain operculated corals. In the latter case the Rudistes would have to be regarded as ranking at least among the subelasses, if as Mollusea at all. My own impressions are that the first-mentioned view is the more probably correct one.

The opinion is occasionally expressed in scientific literature that the shell is a "mere secretion of the mantle." This usually proceeds from some person who has not well studied the mollusean shell, or who is of the age when one kuows more than at any subsequent period.

Such a statement is one of those half-truths which are more dangerous than pure error, since the ballast of truth they contain will enable the error to navigate some distance, while the unfreighted error would capsize at once.

The shell is in one sense the product of secretion from the mantle, as the mammalian tooth is derived from the ectoderm of the jaw, or the skeleton from the periosteum and cartilages. Both are that and much more. It would be as reasonable to say that a steam-boiler, in process of construction, is the product of the boy inside who holds the rivetheads, as to claim that the shell has no more significance than is implied in the term "secretion of the mantle."

The original theoretic protoconch may have been so, but as soon as it came into being its development was governed by the physical forces impinging upon it from all sides, and through it influencing the growth and structure of the soft parts beneath. The Gastropod shell is the result of the action and reaction between the physical forces of the environment and the evolutionary tendencies of the organic individual. In the Pelecypod we have the mechanical stresses and reactions of one valve upon the other added to the category of influences. To a considrable extent it is donbtless as true that the animal is molded by its shell as it is that the shell is shaped by the soft parts of the animal. This results in that correlation of structure which has enabled students to, in the main, correctly judge of the relations of mollusks by their shell characters, when the latter were intelligently studied and properly appreciated.

Class PELECYPODA.

I. Order Anomalodesmacea.

Suborders.

1. Solenomyacea.
2. Anatinacea.
3. Myасеа.
4. Ensiphonacea.
5. Adesmacea.

II. Order Prionodesmacea.

Suborders.

1. Nuculacea.
2. Arcacea.
3. Trigoniacea.
4. Naiadacea.
5. Mytilacea.
6. Pectinacea.
7. Anomiacea.
8. Ostracea.

Suborders.

1. Tellinacea.
2. Solenacea.
3. Mactracea.
4. Cardiacea.
5. Carditacea.
6. Chamacea.
7. Tridacnacea.
8. Leptonacea?
9. Lucinacea.
10. Isocardiacea?
11. Veneracea.
? Rudista.

DESCRIPTIONS OF THE SPECIES.

Order PRIONODESMACEA.

 Suborder PECTINACEA. Family PECTINIDE.Genus Pecten Miiller.
Pecten glyptus Verrill.
Plate viif, Figs. 2, 3.
Pecten glyptus Verrill, Trans. Conn. Acad. Sci., v, p. 580, July, 1882.
Pecten Tryoni Dall, Bull. Mus. Comp. Zoölogy, xviII, p. 438, June, 1889.
Hab.-U. S. Fish Commission Station 2602 , north latitude $34^{\circ} 38^{\prime}$, west longitude $75^{\circ} 33^{\prime}$, off the coast of North Carolina in 124 fathoms, sand ; bottom temperature $61^{\circ} \mathrm{F}$. ; and off Martha's Vineyard in 85 to 120 fathoms.

Shell large, thin, both valves about equally convex, right valve more brilliantly colored; ears subequal, hinge line straight; beaks small, pointed, not prominent; orb of the shell somewhat oblique, anterior portion produced downwarl and forward, margin simple, entire, sharp; sculpture of wide little-elerated ribs, about seventeen in number, each with a central keel which is sharp and slightly serrate over two-thirds of the surface but becomes obsolete toward the margin; this keel is colored more deeply than the rest of the rib, and the color may be alternately concentrated at the prominences and fainter between them. In the specimens observed it is either deep rose color or a warm orange-brown, fading gradually on each side of the keel of the ribs, while the interspaces are pale or white, with faint narrow radiating lines of the color; on the right valve, except along the hinge line, the auricles are pale; the minute sculpture consists, on this valre, of fine radiating grooves, about a dozen between the carinæ of each pair of ribs, across which are carried in fine scallops sharp little-elevated lamellæ; these lamellæ are easily felt, but visible only with some maguification; the left valve shows (in a rose-colored specimen) rery little color, and that a mottled orange-brown confined chiefly to the ribs of the apical third; the ribs
are keeled for a shorter distance than in the right valve, are generally fainter, while the microscopic sculpture is composed ouly of fine concentric incremental lines which have a silky appearance; the hinge line of the left valve slightly overrides that of the other valve and is serrate by fine transverse scales; the ears are subequal, the byssal notch shallow and rounded, withont a pectinium; there are a few elevated radiating lines on these ears; internally the hinge line is nearly smooth, the cartilage pit small and narrow, two short, stout auricular lire radiate from it; the interior of the shell is white; the interspaces between the external ribs are defined by fourteen or fifteen pairs of elevated lire strongest distally and ending close to the margin. Maximum altitude of shell 60.0 ; maximum longitude 60.0 ; longitude of hinge line 25.0 ; diameter of closed valves 11.0^{mm}.

This fine species was not at first recognized from Professor Verrill's rather brief diagnosis, which was not accompanied by a figure; and in this way a new name was applied to the species in a preliminary notice of it. More mature consideration, though without comparison of specimens, leads me to the belief that Professor Verrill's name applies to the shell before me.

Although a ribbed species, the internal lire are very much like those of Amusium, and this shell adds one more to the links which connect the various groups of the old genus Pecten together. A careful comparison has been made with European species, and there can be no doubt of the distinctness of this from any of them.

Pecten exasperatus Sowerby.

The collections made on the voyage contain a valve of Pecten exasperatus Sowerly (P. fuscopurpureus Conrad) from Station 2762, in 59 fathoms, mud, off Rio Janeiro. This considerably extends the southward range of this species beyoud the localities previously known.

Pecten effluens Dall.

Plate xi, Fig. 9.
Pecten effuens Dall, Bull. Mus. Comp. Zoöl., xır, p. 219, September, 1886.
This hitherto unñgured and very delicate little species was originally dredged off Harana by Sigsbee in 127 fathoms. Since then it has been obtained in 300 fathoms off Cape San Antonio, Cuba, by Dr. Rush and at U. S. Fish Commission Station 2646, in 85 fathoms, sand, off Cape Florida.

The valves may be pale or even bright lemon-yellow, orange or scarlet, always somewhat translucent. The surface presents an excellent example of the microscopic Camptonectes striation. The specimen fig. ured is $26.0^{1 \mathrm{~mm}}$ in length.

Section PSELDAMISICM H. \& A. Adams.
Pecten (Pseudamusium) strigillatum Dall.
Plate xi, Fig. 2.
Pseudamusium strigillatum Dall, Bull. Mus. Comp. Zoöl., xvir, p, 438, June, 1889.
Shell small, white, thin, rounded, with a straight hinge-margin; left valve inflated, the posterior auricle narrow, separated by a deep narrow byssal notch from the rest of the margin; right valve flatter, the posterior auricle well defined, small; both valves similarly sculptured with nearly equidistant thin lamellæ, which, when perfect, curve forward and touch the rising curre of the next succeerling lamella; an absolutely perfect specimen would therefore present a series of equal, smooth, concentric wares, falling almost rertically from the anterior hinge margin and curving in a subcircular sweep around to the depression which marks off the posterior auricle in either valve. Practically, however, the fragile lamellæ never retain more than traces of their perfect state and present a series of rers sharp elevated concentric laminæ following the lines of growth and separated by narrow nearly equal intervals, averaging on the whole four or fise to the length of a millimeter, radially measured; the umbones are small and prominent, reaching slightly abore the cardinal margin; the interior is smooth and polished; there is no radiating sculpture; the ligament is small and subcentral; there are no transverse ruge on the hinge margin, and no internal lire. Maximm altitude of the shell 9 ; maximum latitude 8.5; diameter, 4.4 ${ }^{\mathrm{mm}}$.

Hab.-U. S. Fish Commission Station 2383, in 1,181 fathoms, mud, between the delta of the Mississippi and Cedar Keys, Gulf of Mexico; bottom temperature 39°.S F.; Station 2751 , off St. Kitts, in 687 fathoms, ooze; and 2760,90 miles north of Ceara, Brazil, in 1,019 fathoms, temperatures $39^{\circ} .9$ and $39^{\circ} .4$, respectively.

This very simple and yet very characteristic little species seems to stand in need of no comparisons, as it is not sufficiently similar to be easily mistaken for any of the known species.

> Family LIMID.E.

Genus LIMA Bruguière.
Sulgenus LIMATLLA S. Wood.
Limatula setifera Dall.
Plate xiv, Fig. 10.
Limatula setifera Dall, Bull. Mus. Comp. Zoöl., xII, p. 224, 1886.
Hab. -From North Carolina to Barbados in 50 to 450 fathoms, collected by the Albatross at Stations 2612 and 2646.

Fenus LIM届A Bromu.
Limæa Bronniana Dall.
Plate xiv, Fig. 9.
Limaa Bronniana Dall, Bull. Mns. Comp. Zö̈l., Xır, p. 226, 1896.
Hab.-North Carolina to Barbados in 15 to 804 fathoms, U. S. Fish Commission Stations 2596, 2612, and 2619 being among the localities.

Suborder MYTILACEA.
Family MYTILIDE.
Genus CRENELLA Brown.
Crenella (decussata var.?) divaricata Orbigny:
Crenella decussala (Montagu) Dall, Bull. Mus. Comp. Zö̈1., ix, p. 116; xır, p. 235, 1836.

Nuculocardia diraricata Orbigny, Moll. Cuba, 11, p. 311, Pl. xxvir Figs. 56-59, 1845.
This little shell-described from the Autilles by Orbigny, and indistinguishable from specimens of \boldsymbol{C}. decussata of the same size, except that it is usually whiter-never reaches the size of northern specimens of \boldsymbol{C}. decussata. The latter is found as far south as Catalina Island, off the coast of Sauta Barbara County, California. The presence of a fresh specimen of C. divaricata containing the animal, in dredgings at Station 2805, in 51 fathoms, mud, Panama Bay, was therefore not altogether surprising. It is the first record of the Antillean form on the west coast of America and adds to the probabilities of its being merely a tropical race of C. decussata.

Suborder NUCULACEA.
Family LEDIDE.

Genus MALLETIA Desmoulins.

Malletia goniura sp. nov.
Plate x, Fig. 10.
Shell small, rather full, with a brilliantly polished olivaceous epidermis, and faint sculpture of incremental lines; umbones not prominent; anterior end rounded ; base nearly straight; posterior extremity bluntly truncate with a double flexure, caused by tro well-marked ridges extending from the beaks to the extremity of the shell: lumule and escutcheon linear or none; ligament external, short, black; hinge line straight behind the beaks, descending slightly in front of them, with nineteen anterior and twenty-five posterior, small, short V-shaped teeth, the two series separated by a short edentulous space; interior polished, slightly iridescent ; muscular scars rather large, faint; the pal-
lial line obscure, with a large rounded simus; margins simple, smooth. Longitude of shell 15.5 ; altitude, 9 ; diameter, 6 mm.

Hab.-U. S Fish Commission Station 2793, off the coast of Ecuador in 741 fathoms, mud; bottom temperature $38^{\circ} .4 \mathrm{~F}$.

This species is most like M. arruana Smith from the Arru Islands, but that species has the upper posterior corner beveled off and no longer angular, which makes a marked difference in the outline of the shell. II. obtusa, which has somewhat the same form, wants the marked furrows of the posterior end of this species.

Malletia (Tindaria?) æolata sp. nov.

Shell small, thickish, pale straw color, subrectangular; surface smooth and polished at the umbones, gradually becoming strongly concentrically ridged with rounded narrow ridges separated by mostly linear interspaces; anterior end longer, nearly evenly rounded, a little produced below; posterior end shorter, longest above, obliquely truncate with a concave ware between the upper point and the beginning of the little-curved base; beaks full, not prominent; no visible lunule or escutcheon; hinge margin broad, with eleven anterior and eight posterior \mathbf{W}-shaped teeth, of which four or five on each side are not developed; ligament central under the beaks, small, wholly external to the tooth line; interior polished, scars and pallial line rather obscure. Maximum longitude 4.5; altitude 3; diameter 2.5; vertical of beaks from anterior end 2.8^{mm}.

Hab.-Station 2754, in 880 fathoms, ooze, east from Tobago ; temperature $37^{\circ} .9 \mathrm{~F}$.

Nearest to the young of M. australis or the adult M. excisa, but of different form from the latter, stouter and more rectangular and less deeply notched.

> Malletia (Tindaria) amabilis Dall.

Malletin (Tindaria) amabilis Dall, Bull. Mus. Comp. Zoöl., xviil, p. 438, Pl. xl, Fig. 8, June, 1889.
This species was obtained from Stations 2751 and 2754 , in 607 fathoms, ooze, off St. Kitts, and 880 fathoms, ooze, east from Tobago; temperatures $39^{\circ} .9$ and $370^{\circ} .9 \mathrm{~F}$., respectively.

> Malletia (Tindaria) agathida sp. nov.

Plate xili, Fig. 10.
Shell small, stout, white, with prominent umbones; produced and rounded before, shorter and pointed behind, with close, strong, subequal, uniform concentric ridges; base rounded, slightly concavely waved in front of the angle of the rostrum, corresponding to a marked depression in front of au equally prominent ridge which extends from
the umbo; the concentric ridges are abont equal to their interspaces; there is a pale yellow concentrically finely wrinkled epidermis; the tips of the umbones are full, smooth, and polished; there is a lanceolate, smoothish lunule bounded by an obscure ridge, and a shorter and narrower escutcheon bounded by a faint ridge, ontside of which is a faint depression; on either side of the beaks is a narrow, flattened area, recalling that of Limopsis, but wuch smaller and narrower; in the middle of this, just muder the beaks, is a very small socket for the ligament, which is wholly external to the line of the teeth, just as in Palcooneilo; there are eleren developed and three obsolete auterior teeth and about twelve posterior teeth, of which two or three are very small; the two sets are separated by a very narrow, smooth space, but there is no cartilage; the muscular sears are deep, the pallial line obseure, the margin simple, and the valves rather thick; maximam longitude of shell 5.5 ; maximum altitude 4.5 ; diameter 3.1^{mm}; the beaks are over a poịut on the line of maximum length, which is 3.25^{mm} from the anterior end.

Hab.-Station 2751, sonth from St. Kitts, in 687 fathoms ; and 2754, east from Tobago, in 880 fathoms; temperatures 370.9 to 390.9 F .
This species has much the outline of Modiolarca exilis H. and A. Adams (see Zool. Kerguelen Id., Mollusea, by E. A. Smith, Transit of Venus Experlition, Zool., Plate Ix, Fig. 24), and resembles in stontuess and seulpture Leda Brookiei Hanley, as figured in the Thesaurus.

Malletia (Tindaria) acinula sp. nov.

Plate xiif, Fig. 4.

Shell small, subquadrangular, white, with the anterior end shortest, and the surface sculptured with strong, close, subequal, rounded concentric waves, separated by linear interspaces; base produced in the middle, rounded; auterior end short, rounded; posterior end longer, with a rounded point, but not rostrate; beaks apical, but not prominent; lumule and esentcheon subequal, small, narrow, impressed, rather short, with no bounding elevated line or groove; ligament small, longer than high, directly under the beaks, external to the tooth line, and visible externally in the closed shell; anterior part of the hinge with eight, posterior part with ten, \mathbf{V}-shaped teeth, of which two or three on each side are very small; scars well marked, impressed ; pallial line obscure, arenated in front of the posterior adductor; margin of the valves plain, interior polished, shell rather thick; maximum longitude of shell 5.0 ; maximum altitude, 4.2 ; diameter 3.5 ; distance of vertical, drawn from the beaks, from anterior end, 1.5^{mm}.

Hab.-With the last and also at Station 2760, in 1,019 fathoms, brown clay, ninety miles north from Ceara, Brazil ; temperature $39^{\circ} .4$ F.

This shell has much the outline of Ledu quadrangularis Dall, but is proportionally higher and shorter, with more prominent and regular concentric sculpture.

Plate xili, Fig. 3.
Shell small, inflated, thin, closely, minutely, concentrically ridged, with a green or olive-green epidermis; anterior end shorter; base evenly rounded, beaks full but not prominent; outline of the shell recalling Callista; anterior end evenly rounded, posterior produced, with a very obtuse rounded point, not rostrate; ligament under the beaks, but extending further behind than in front of them, wholly external to the tooth line, which is continuous below it; anterior teeth eight, posterior ten, with three or four undereloped additional teeth under the beaks on each side; teeth prong shaped; scars obscure, pallial line invisible; shell very thin, cardinal margin very weak and narrow. Maximum longitude 4.5 ; altitude 3.5 ; diameter 2.5 ; vertical of the beaks, $2^{\text {mu }}$ from the front margin.

Нab.-Stations 2781, 2782, 2783, and 2785, in 122 to 449 tathoms, mud, on the west coast of Patagonia; temperatures 47° to $50{ }^{\circ} \mathrm{F}$.

This species is exceptional for its thin shell aud very green epidermis I have not been able to distinguish any lunular area or escutcheon.

Genus YOLDIA Mörch.
Yoldia scapania sp. nov.

Plate xill, Fig. 6.

Shell elongated, polished, smooth, whitish with a pale yellowish epidermis, the beaks very inconspienous, hardly raised above the level of the slightly angulated hinge-line; base nearly straight; the anterior end rounded above, more oblique toward the base; the beaks slightly more than one-third of the way from the anterior to the posterior end ; posterior end bluntly rounded as in a Siliqua ; interior smooth, white, with a deep rounded pallial sinus and rather large rounded muscular scars; hinge with about twenty-eight very small V -shaped posterior and twenty-five anterior teeth, the anterior ones being crowded more elosely; there is a greater difference in the length of the hinge-line on each side of the ligament pit than the numbers would imply; ligament wide, low, subtriangular, wholly internal; margins of the valves smooth, sharp; maximum longitude of shell 18.25 ; altitude 9 ; diameter 5.6^{mm}.

Hab.-U. S. Fish Commission Station 2769, east of Rio Janeiro, in 59 fathoms, mud; bottom temperature $57^{\circ} \mathrm{F}$.

This species is remarkably soleniform, gaping slightly at either end, mostly at the posterior end; it is very evenly mflated and the beaks are so inconspicuous as to be practically almost indiscernible. It is most like Y. solenoides Dall, which is smaller, has the posterior end less blunt and slightly narrower; is a smaller shell, with more central umbones and a few concentric grooves near the base. In the present
species, as in the Y. solenoides, there is a narrow lunnle and escatcheon bounded by a shallow groove, but in the latter this groove indents the anterior margin, while in Y. scapunia it does not. There are a few obscure radiatious, aud the incremental lines are more conspicuous toward the middle basal part, but the sculpture, if such it can be called, is hardly noticeable. The teeth are larger in Y. solenoides, though it is a much smaller shell.

Yoldia pompholyx Dall.

Plate xili, Fig. 8.

Foldia pompholyx Dall, Bull. U. S. Nat. Mus. No. 37, p. 44, No. 151, 1889.
Shell small, rounded, polished, inflated, smooth except for incremental lines, covered with an extremely thin grayish green epidermis; subtranslucent when fresh, ashy or white when weathered ; a pair of very faint ridges in front of and behind the beaks indistinctly indicate areas corresponding to lunule and escutcheon; beaks rounded, inconspicuons; shell entirely closed when the ralves are shat; ligament nearly central, its uppersurface slightly exposed externally between the valves; interior smooth ; hinge line narrow, roundly arched with seven anterior and eight posterior teeth of normal form and a well-marked pit or fossette central between the beaks; margins smooth; maximum longitude of largest valve 4^{mm}; longitude of another (pair) 3.5 ; altitude 3 ; diameter 2^{mm}.

Hab.-U. S. Fish Commission Station 2668, in 294 fathoms, gravel, off Fernandina, Fla.; temperature $46^{\circ} .3$ F. Also by Dr. W. H. Rush, U. S. Nary, off Havana in 1,024fathoms, mud, and off the Fowey Rocks, east Florida, in 205 fathoms.

This curious little species has much the external form of Jeffreys' Glomus, but has the regular hinge of the small rounded Yoldias.

Genus LEDA Schumacher.
Leda cestrota sp. nov.

Plate $\times 1$ II, Fig. 7.

Shell thin, compressed, elongated, rostrated, translucent white, with a pale gray or olive epidermis, which is generally mostiy lost ; umbones hardly raised above the hinge-line, pointed, inconspicnons, compressed; base forming a shallow reversed arch, meeting the anterior curve of the upper edge iu a rounded point; posterior upper margin nearly straight, becoming slightly concare toward the end of the rostrum; rostrum longest above, obliquely trmeate, its basal margin slightly concave, then swelling into the curve of the base; sculpture of numerons thin, sharp, elevated concentric lamellæ, prominent anteriorly and near the base, less so on the cheeks of the valves and obsolete near the rostrum;
radiating seulpture of a ridge bounding the lunule over which the lamellæ pass, becoming finer and then obsolete toward the pouting cardinal margin; also, a ridge bounding the escutcheon, and a second less obvions thread from the beak of each valve to the lower angle of the rostrum; the former shows by small elevatel, pointed scales the influence of the lamella, slight traces of which also appear on the second ridge; the escutcheon is long, narrow, and smooth, with pouting lips, and there are no developed lamellae between the ridges outside of it; shell internally polished, showing no scars; there is no mesial ridge in the rostrum; cartilage large, black, triangular, posteriorly iuclined, wholly internal ; teeth small, about forty anterior and fifty posterior to the beaks, of which seven to nine on each side are undeveloped; on the anterior side, between the anterior margin of the fossette and the toothline proper, is a flat space over which these undeveloped teeth are widened out as transverse, but little elevated, ridges; maximum longitude of shell, 25.5 ; longitude from rertical of beaks to end of rostrum, 17 ; maximum altitude of shell, 8.75; diameter, 3.75^{mm}.

Hab.-Station 2145, near Colon (Aspinwall), in 25 fathoms, mud.
This is nearest L.concinna Adams, from New Zealand, but is proportionally more elongated and pointed posteriorly, and more compressed.

Leda platessa sp. nov.

Shell thin, flat, smooth, whitish, nearly straight; sculpture only of faint incremental lines; epilermis pale straw-color, translucent, polished; beaks small, bulbous, but inconspicnous, or hardly elevated above the hinge-line; lunule so narrow as to be obsolete; escutcheon extremely narrow, long, bordered by a faint thread, below which is a still fainter one; base arcuate; anterior end eveuly rounded, short; posterior end straight, squarely, not obliquely, rounded-truncate; interior polished, rostrum with a mesial septum most elevated distally, nearly central; fossette narrow, elongated, parallel with the cardinal margin; teeth very small, anterior series with four undereloped and seven elevated teeth; posterior series with about twenty-five developed and eight or nine (?) undereloped arched teeth; iuterior of shell polished, not showing the scars. Maximum longitude of shell 10.3; altitude 4.4; diameter 2; rertical of the beaks from anterior end 3.25^{mm}.

Пив.-Station 2762, east from Rio Jaueiro, in 59 fathoms, mud; temperature $57^{\circ} \mathrm{F}$.

The nearest relative of this shell is Leda Carpenteri Dall, from the eastern coast of the United States and the Antilles. The latter has the rostrum much more slender and more recurred, the lanule, and especially the escutcheon, wider and better defined, and the curve of the anterior end more pointed in the middle. The central part of the base below the beaks is also, in harmony with the general curvature of the shell, proportionally more produced, The namber of teeth on the
hinge-line is smaller, the fossette shorter and wider, and the rostral septem more dorsally situated.
This species recalls, to some extent, Leda Bushiana Verrill, but that species is more elevated and has sparse, prominent concentric lamellæ over part of its surface.

Leda pontonia sp, nov.
Plate xili, Fig. $5 b$.
Shell stont, strong, inflated, with a thin ochre-5ellow or pale olive epidermis and recurved, pointed, posterior end; beaks approximate, full, incurved, not high, slightly anterior; anterior eud evenly romuded, produced; posterior end vertically compressed, produced, recurved, pointed but not rostrate; base evenly arcuate; radiating sculpture of occasional faint microscopic striations near the ends of the shell, usually absent, and a marked but not sharp-edged ridge in each valve, extending from the beak to the posterior point and bounding the pos. terior dorsal area in each valve; concentric sculpture of numerous fine regular continnous romuded threads, separated by narrower grooves; this sculpture, however, becomes suddenly obsolete on the cheeks of the valses and in front of the ridges above mentioned; the threads are stronger above and behind the ridges, but fade out in a central cordate area which, though not impressed, may be taken to represent the escutcheon ; there is no obvious lunule ; interior polished, muscular and pallial scars faint, the former small ; pallial sinus shallow, small, and terminal; teeth V-shaped, anterior sixteen, posterior thirteen, all developed; fossette internal, deep set, snbtriangular, short; maximum longitude of shell 14.5 ; altitude 10 ; diameter 6.8 ; vertical of beaks behind the anterior end 6.25^{mm}.

Hab.-Stations 2807 and 2808, in 812 and 634 fathoms, mud and sand, near the Galapagos Islands, Pacific Ocean ; temperatures $38^{\circ} .4$ and $40^{\circ} \mathrm{F}$.

This is a remarkably plain, stout, and simple species, notable for its recurved tip, broad, flattened posterior dorsal area and arcuate base. It has somewhat the form of L. chuva Gray, but is proportionally longer and has a different sculpture.

Family NUCULIDA.

Genus NUCULA Lamarck.

Nucula Verrillii Dall.

Plate xiv, Fig. 4.
Nucula Verrillii Dall, Bull. Mus. Comp. Zö̈l., Xviri, p. 24s, 1886.
Nucula trigona Verrill, Trans. Conn. Acad., vi, p. 438, 1885, not of Bronn, 1849, or Seguenza, 1877.
Hab.-Off Nantucket at Station 2194 in 1,440 fathoms, and off the coast of Maryland at Stations 2228 and 2229 in 1,582 and 1,423 fathoms Proc. N. M. 89—— 17
(Verrill). Also at Station 2754 in north latitnde $11^{\circ} 40^{\prime}$ and west longitude $58^{\circ} 33^{\prime}$ east from Tobago in 850 fathoms, ooze, and Station 2760, 90 miles uorth from Ceara, Brazil, in sonth latitude $1 \because 07^{\prime}$ and west longitude $37^{\circ} 17^{\prime}$ in 1,019 fathoms, broken coral bottom; temperatures $37^{\circ} .9$ to $39^{\circ} .4 \mathrm{~F}$.

This species recalls the Miocene N. dolabella H. C. Lea from Virginia.

> Nucula cremulata A. Adams.

Nucula creunlata A. Adams, P. Z. S., 1860, p. 52.
N. culebrensis E. A. Smith, Chall. Rep., Lamellibr, 1. 2.2n, Pl. xvin, Figs. 11, 11a, 1855.
N. crenulata Dall, Bull. Mns. Comp. Zoül., $1 \times$, p. 123, 1881, xif, p. 247, Pl. Vir, Fig. 2, 1886.

Hab.-Gulf of Mexico and Antilles, also Station 2785, in south latitude $48^{\circ} 9^{\prime}$ and west longitude $7 t^{\circ} 36^{\prime}$, on the west coast of Patagonia in 449 fathoms, niud; temperature 460.9 F .

This locality greatly increases the sonthward range of this species and carries it into the Paciic. The identification seems satisfactory.

Nucula cancellata Jeffreys.

Nucula reticulata Jefireys, 18i6, not of Hiads.
N. cancellata Jetireys, P. Z. S., 1\&2 1, p. 951. Verrill, Trans. Coun. Acad., vi, 231, 1884.

Hab.-Europe, Azores, New England, near Georges' Banks and southward to Martha's Vineyard. Also at Station 275t, east from Tobago, in 880 fathoms, voze, temperature $37^{\circ} .9$, north latitude $11^{\circ} 40^{\prime}$ and west longitude $55^{\circ} 33^{\prime}$.

The known southward extension of this species is greatly enlarged by the specimens dredged as above mientioned.

Nucula cymella Dall.
Plate XiII, Fig. 1.
Nucula cymella Dall, Bull. Mns. Comp. Zuöl., Xu, 1. 246, 1886.
Hab.-Yucatan Strait in 540 fathoms. Florida Straits. Also at Station 2135, in 250 fathoms, hard coral bottom, soutio of Cuba, in latitude $19{ }^{\circ} 56^{\prime}$ north and longitude $75045^{\prime \prime}$ west ; Station 2754 , east from Tobago, in 880 fathoms; and Station 2760,90 miles northward from Ceara, Brazil, in south latitude 1207^{\prime} and west longitude $37^{\circ} 17^{\prime}$, in 1,019 fathoms, broken coral ; temperature 380.4 F .

The last station extends the known range of this species nearly 2,000 miles to the southward of previous stations.

> Nucula callicredemna sp, nov.

Plate xili, Fig. 9.
Shell rather large when adult, thin, compressed, with a polished yel-lowish-olive uniform epidermis. radiating and concentric sculpture; form of adult ovoid, recalling Nucula niponica E. A. Smith (Chall. Rep.,

Lamellibrauchs, 1'l. xvin, Fig. 8) but proportionally higher; beaks prominent, recurved, frequently eroded; radiating senpture of numerous fine, rather distant, sharp threads, more crowded near the beaks, broader and less sharp near the anterior and posterior basal margin, not dichotomous; concentric seulpture of narrow, rather short, diseontinuous and irregularly placed ripples, strongest and more irregular near the base, more crowded and regular and much less prominent near the beaks, sometimes altogether or nearly absent, especially in the young; lunular region impressed but not circumscribed, rather short and broad, with a shallow flexure just outside of it; eseutcheon long, narrow, obseure ; interior nacreons, polished, the basal margin closely, deeply, and sharply fluted, at all ages; anterior tooth-line coneavely curved with nine teeth, all developed; posterior series convexly moderately curved with nineteen developed teeth rather conical and sparsely set; fossette shaped like the operenlum of Fusus, curved in harmony with the dorsal margin, wholly internal; maximum longitude of adult 12.5 ; altitude 9 ; diameter 5.5 ; vertical of beaks from anterior end 2.755^{mm}. Young shell, longitude 7.25 ; altitude, 5.5 ; diameter $3.5 \mathrm{~m}^{\mathrm{mm}}$.

Hab.-Station 2754 , east of Tobago, in 880 fathoms, ooze; temperature $37^{\circ} .9 \mathrm{~F}$.
This elegant shell is quite noticeable for its thin aud light character, its continnous fine sharp radii, and its narrow though not flattened form. The young are more triangular, smoother, and proportionally more plump, some of them recalling at first sight the adult N. Verrillii Dall. The internal fluting is partienlarly marked and sharp and has suggested the specific name. There is no species which closely resembles this form, though it belongs to the group which contains N. cremulata, cancellata, decussata, ete.

Suborder ARCACEA.
Family ARCID.E.
(ienns ARCA Linné.
Arca jamaicensis Gmeliu.
Arca barbata Linné.
The above species were collected at the Abrolbos Islands off the coast of Brazil near Bahia.

> Arca Noæ Linnf.
> Arca reticulata Gmelin.

Arca Adamsi Shuttleworth.
The three preceding species were collected at Station 2758,90 miles sontheast from Cape San Roque, Brazil, in 20 fathoms, shelly bottom, about 419 miles south of the equator. A. reticulatu and A. Ademsi were also obtained at the Abrolhos Islands.

Arca glomerula Dall.
A. glomerula Dall, Bull. Mus. Comp. Zö̈l., ix, p. 121, 1881; xii, p. 241, Pl. viif, Figs. 9, 9x, 1886.
A. incquisculpta E. A. Smith, Chall. Rep., Lam., p. 267, Pl. xvir, Figs. 8a-8c, 1885.

This species was obtained at Station 2750, in 497 fathoms, sand, off the island of St. Bartholomew, West Indies; temperature $44^{\circ} .4$.

> Arca pectunculoides var. orbiculata Dall.
A. var. orbiculata Dall, op. cit., ix, p. 121, 1881 ; Xir, p. 210, Pl. vint, Fig. 5, 1886.

This species was obtained at Station 2751 in 687 fathoms, globigerina ooze, south of St. Kitts, West Indies; temperature 390.9 F.

Genus PECTUNCULUS Lamarek.

Pectunculus undatus Linn6.

P. undatus (Liuné) Dall, Bull. Mus. Comp. Zö̈l., xıı, p. 238, 1886.

This species was obtained at Station 2758, 90 miles southeast from Cape San Roque, Brazil, in 20 fathoms, shelly bottom. South of this station where the genns occurred it was represented by the Patagonian form which occurs on both eoasts of the sonthern part of South America.

> Order TELEODESMACEA.
> Suborder CARDITACEA.
> Family CRASSATELLIDA.
> Genus CRASSATBLIA Lamarck.
> Crassatella floridana Dall.
> Plate xı, Fig. 4.

Crassatella floridana Dali, Bull. Mus. Comp. Zoül., Ix, p. 131, 1881 ; XII, p. 256, P1. vi, Fig. 12, 1886.
Hab.-Gulf of Mexico and southeastern coasts of the United States at U. S. Fish Commission Stations 2372, 2409, 2410, 2595, 2596, 2597, 2598, 2604, 2606, 2607, 2608, 2610, and among the Florida Keys in 3 fathoms, living, by Lieut. J. F. Moser, U. S. Nary. The species ranges in depth from 3 to 50 fathoms, is commonest in about 25 fathoms, and has been found in temperatures of $73 \circ .5$ to $80^{\circ} \mathrm{F}$.

This fine species was originally described and figured from a young shell. The adults obtained as above by the U. S. Fish Commission enable me to figure the adult. The largest valve obtained measured 78^{mm} long and 57^{mm} high. The complete shell must have had a diameter of about 31^{mm}. When fresh it is covered with a bright redidish brown epidermis, which becomes fibrons after death and maceration or in very aged specimens. The margins are smooth at all ages. In aged specimens the outside longitudinal grooving becomes obsolete near the mar-
gin. The interior in iresh specimens is pink, white, or pinkish chocolate, darker behind; sometimes of a rich salmon color. The species does not agree with any of Courad's Tertiary species, and is entirely dis. tinct from the C. antillarm liseve, the only other recent species of the true Crassatellas yet known to inhabit this region. It has not yet been found in the sontheastern Antilles.

Family ASTARTID.E.
Genus CIRCE Schumacher.
Sulogemus GOULDIA C. B. Adams.
Gouldia cerina C. B. Adams.

This species was collected at Station 2758,90 miles sontheast from Cape San Roque, Brazil, in 20 fathoms, shelly bottom. This is by far the most southern habitat for the species yet recorded.

Suborder LUCINACEA.

Family UNGULINIDE?

Gemus CRYPTODON Turton.
Cryptodon barbarensis Dall.
Plate Vill, Fig. 9.
Shell white, superficially chalky, rather compressed, rounded below, the beaks not very prominent; the surface is seulptured only with ineremental lines; there is a rather large impressed lumular area not circumseribed by a line; behind there is an upper, narrow and deep radial depression with a lower, wider and less marked second one, which make corresponding flexnosities of the posterior margin; a narrow rather deep groove runs near the margin outside the ligament marking off a narrow elongated escutcheon; interior white, unpolished; hinge edentulous. Maximum longitude of shell 17 ; altitnde 17 ; diameter 10 mm .

Hab.-U. S. Fish Commission Station " 840 , off the Santa Barbara Islands, California, in 276 fathoms, green mud.

This fine species is nearer C. Sarsii than any other, but has lecidedly more elevated and narrower beaks. It is probable that all these shells should be called Aximus, as there can be little donht that his fossil type really belongs to this group. As long as even that little exists, however, it is a question whether Sowerby's name should be adopted.

Soft parts.-The foot is extremely slender (0.5^{mm}), with a small spin-dle-shaped dilation at the distal end, cireularly rugose, and abont 40^{mm} long, as contracted in alcohol. The gills are as long as the shell, or nearly; the stem has a dorsal and a rentral lamina, and the dorsal lamina is reflected ontward and downward, until its lower margin is on a level with the stem. There is only one pallial and branchial opening,
with the edges posteriorly thickened or infolded but nearly smooth. The anal opening has no tube, but forms a simple long ovate slit. The gills are free, except proximally, over two thirds of the whole length is unattached. The month is small, with a narrow raised edge like a Polyzoon epistome, but no palpi. The ovarian and hepatic lobules are attached on each side of the foot and ramify from a central area of attachment in a very large number of short stont spongy lobules, recalling the digitations of some keratose sponges. The ova are minute and yellowish. The hepatic granules are dark brown or grayish. The whole mass of the genito hepatic organs nearly fills the mantle cavity, and is larger than all the rest of the soft parts put together. These lobules are not like the pyriform projections of Myonera, each of which projects singly from the rounded surface of the risceral mass, and probably subsides after the period of orulation. In Cryptodon the whole mass on each side arises from a single small area, and digitates afterward.

> Cryptodon fuegiensis sp. nov.

Plate xiv, Fig. 2.

Shell large, white, thin, suborbicular; concentric seulpture of incremental lines; radiating sculpture of one sharp groove near and paraliel with the posterior hinge-margin, its termination indenting the margin, and a wider shallow sulcus below it also causing a flexuosity on the posterior margin ; an obscure groove anteriorly bounds a lunular area, and there are several faint indications of other radii near those above mentioned ; surface of the ralves microscopically gramulous, covered with a mostly dehiscent pale straw-colored epidermis; valves only moderately inflated; ligament long, black, leep-seated; hinge edentulous; interior of shell faintly radiately striate; sears distinct, with rather irregular outlines; margin sharp, simple; maximum longitude of shell 25 ; altitude 21.5; diameter 14.4; vertical from the umbones behind the anterior end 7^{mm}.

Нив.-Station 2779, in the Straits of Magellan, in $77 \frac{1}{2}$ fathoms, ooze, temperature $46^{\circ} .9 \mathrm{~F}$.

This splendid species is one of the largest recent forms known, and was discovered iu fragments which ahmitted of reconstruction.

There does not appear to be any fossil species on the coast of South America which is nearly related to O. fuegiensis, but it may be mentioned that the Tenus bisectus Conrad (Wilkes Exploring Expedition, Dana Geologieal Report, p. 724, pl. 17, fig. 10), afterward referred by Conrad to Cyprina (Am. Jour. Conch., 1, p. 153, 1865) is a fine species of Cryptorion or Axinus. I hope before long to publish a revised list of these Oregonian fossils referred by Conrad to the Eocene, some of which appear to be closely related to some of those forms figured from the Tertiary of Chile by the venerable Dr. Philippi in his latest works.

$$
\text { Plate xN, l'ig. } 1 .
$$

Cryptodon pyriformis Dall, Bull. Mus. Comp. Zü̈l., Xil, p. 267, 1886.
Hab.-U. S. Fish Commission Stations 2641 and 2678, off the eastern coast of the United States, from Cape Fear to Florida, in 85 to 731 fathoms ; also by the Blake in 640 fathoms in Jucatan Strait.

Cryptodon ovoideus Dall.
Plate Xiv. Fig. 3.
Cryptodon oroidens Dall, Buil. U. S. Nat. Mus., No. 37, p. 50, No. 211, 1* -9.
Hab.-U. S. Fish Commission Station 2626 , in 353 fathoms, sand, 87 miles off Cape Fear, North Carolina, temperature $40 \circ$ F.

The shell is yellowish-white and somewhat earthy, and measures 25 by 20^{mm}, with a diameter of 14^{mm}. The surface is somewhat malleated and the lumule short, wide and deep.

Family LUOINID.E.
Genus LiUCINA Bruguiere.
Ltucina sombrerensis Dall.
Plate XIV, Fig. 13.
Lucina sombrerensis Dall, Bull. Mus. Comp. Zoöl., XiI, p. 264, 1886.
HAB.-Stations 2646 and 2648 , in $8 t$ to 85 fathoms, sand and mnd, off Cape Elorida. Also in the Gulf' of Mexico and off Sombrero Island, West Indies, by the Blake, in 50 to 72 fathoms.

> Lucina Ieucocyma Dall,
> Plate xiv, Figs. 6, 7:

Lucina leucocyma Hall, Bull. Mus. Comp. Zoöl., N11, p, 26it, 1=66.
Hab.-Off the eastern coast of the United States, the Gulf of Mexico and the West Indies, in from in to 683 fathoms. Collected by the Albatross at Stations $2117,2595,2596,2600,2602,2646$, and 26 ± 5.

> Lucina sagrinata Dall.
> Plate xw, Fig. 11.

Lucina sagrinata Dall, Bull. Mns. (Somp. Zoül., xil, p. 265.5, Iee6; xvili, p. 439, 1889.
Hab.-U. S. Fish Commission Station 2646, off Cape Florida, in 85 fathoms; also in the Ginlf of Mexico by the Blake in 182 to 300 fathoms.

Lucina pecten Lamarck.
Lucina squamosa Lamarek.
Lucina costata Tuomey \& Holmes.
Lucina trisulcata Conrad.
The abore-mentioned species of Lucina were obtained at Station 2758, 90 miles southeast from Cape San Roque, Brazil, in 20 fathoms, shelly bottom. L. pecten was also collected at the Abrolhos Islands, off the coast of Brazil, near Bahia.

Family DIPLODONTID.E.

Diplodonta soror C. B. Adams.

Diplodonta semiaspera Philippi.
The abore species were collected at Station 2766, off the Rio de la Plata, in $10 \frac{1}{2}$ fathoms, sand.

Diplodonta subglobosa C. B. Adams.
This species was collected at Station 2755 with the species of Lucina above mentioned.

Suborder CHAMACEA.
Family CBAMIDA.
Genus CHAMA Brıguière.
Chama sarda Reeve.
This well-characterized species was collected at the Abrolhos Islands, Brazil.

> Suborder CARDIACEA.
> Family CARDIIDA.
> Genus CARDIUM Linné.

Subgenns LOPHOCARDIUM Fischer.
Lophocardium Fischer, Man. de Conchyl, p. 1038, 1887. Type C. Cumingi Adams \& Reeve.

Lophocardium Annettæ Dall.

$$
\text { Plate X, Fig. } 4 .
$$

Lophocardium Annettre Dall, Nantilus, 1). 13, June, 1889.
Shell thin, inflated, suborate, longer than high; color rose red with a tinge of salmon-color; sorered with a thin dehiscent papyraceons epidermis produced on the erlges of the elevated sculpture; umbones in-

Hated subeentral with the color decper than on the rest of the shell; sculpture of fine very mumerous radiating grooves with broader flat interspaces or flattened riblets, crossed by fine concentric, slightly irregular narrow ridges made more prominent by the slightly projecting epidermis; on the posterior sixth of the shell the radiating riblets are coarser and slightly rounded, crossed by rather distant more elevated concentric lamine fringed with epidermis; the posterior area separated from the rest of the surface by a slightly elevated somewhat curved radial lamina which is minutely frilled or puckered in such a way that its edge where unbroken is delicately notched. Posteriorly the shell gapes a little; the anterior margin is eveuly rounded, below evenly arched, posteriorly subtruncate and everywhere simple and sharp; the cardinal margin is reflected and elevated before the umbo, more depressed behind it with a delicate ligamentary insertion plate; there are no lateral teeth in either valve; in the right valve the inner edge of the hingeplate is coutinned as an elevated line above which the upper posterior margin is produced vertically, making this valse a trifle larger than the other, and more angular at the upper end of the truncation; in the right valve are two slender curved cardinal teeth, the longer notched near its tip, in the left valve a single tooth excavated above. Longitude of shell 29 ; altitude 25 ; maximmm diameter 20 mm .

Hab.-Coast of Lower California at Station 2828 in north latitude $24^{\circ} 11^{\prime}$ and west longitude $109^{\circ} 55^{\prime}$ in 10 fathoms; fragments were collected at Stations 2823 and 2826 , in 8 to 27 fathoms, shelly bottom, within a few miles of the preceding and also in material dredged near San Clemente Island in 25 fathoms.

The soft parts of this species resemble those of other Cardiums, except that the siphonal septum is prodnced forward to and around the foot, completely separating the anal and branchial chambers. This septum is thin, membranous, and imperforate except for the foot. The siphonal orifices are profusely papillose and most of the soft parts are of a pinkish color.

This shell differs from all other Cardiums, recent or fossil (except C. Cumingi), in the total absence of lateral teeth The section Lophocardium of Fischer was based on the prominent radial lamina of C. Cumingi, bat an examination made at the British Museum by the conrtesy of Mr. E. A. Smith, at my request, showed that that species partakes of the same hinge characters. For this reason I raised the section to the rank of a subgenus undei Dr. Fischer's name.

From C. Cumingi, which was obtained from the same region, the present species differs in form, in details of sculpture, and in the less elevated radial lamina. It is one of the most beantifnl shells of the genus, but so fragile that it is extraordinary that even a single specimen was obtained in a perfect state.

The soft parts resemble in the main those of other Cardiums except in regard to the siphonal septum. A partial siphonal septum is com-
mon among Pelecypods, especially short-siphoned forms, where the interual septum may, to a certain extent, make up for the absence of the long and complete division between the passages in those forms with long siphons. The septum is usually a mere subtriangular thin membranous shelf, the posterior extension of the tissues which separate the $t^{\text {two }}$ siphons, while from near its lateral corners radiate the muscles which in those forms with a pallial sinus serve to retract the siphons. Below it is the more fleshy languette or curtain-valve which closes the incurrent siphonal opening when required. Among those forms in which we may find the septum especially well developerl are the different groups of Cardium. In C. edule a short septom is present, and is figured by Deshayes (Moll. Algerie, Pl. xcvit., Fig. 6), in which an opening appears above and behind the valsular languette. I suspect this to be due to lesion, as I have not found such an opening in any of the species of Cardium I have examined. In another species, C. hians (op. cit., Pl. xcvi., Fig. 2), the septum is consilerably extended forward. The present species has the ordinary gills of Cardium well dereloped, with their posterior anchorage high mp and near the siphonal septum at its origin. The septum thin, slightly fibrous, but nowhere fleshy, extends forward to the foot and on each side of it. In this case there is no orifice above the languette, or elsewhere in the partition. Doubtless an exhanstive search would find many other grouns in which certain members exhibit a siphonal septrm, more or less completely dividing the peripelal chamber. Until the character has become more particularly specialized and permanently established, it is evident it can have but a minor value as a guide to the systematist, or a test of his classification.

Family ISOCARDIIDA.
Genns CALLOCARDIA A. Ailams.
Callocardia A. Adams, Ann. Mag. Nat. Hist., ximi, p. 307, 1864. Dall Bull. Mus. Comp. Zoïl., xir, p. 272, 1886. Type C. guttata A. Adams.

To the kindness of Mr. Edgar A. Smith, of the British Museum, I owe a careful drawing of the interior and hinge of the mique left valse of Adams' type of Callocardia. This is reproduced here, having never been figured. Meiocardia H. \& A. Adams differs from Callocardia not only in the shape of the shell but in the form of the cardinals, the principal lamella of which is externally carinated, the carina rumning down and outward below and coiling into the spiral umbo. The teeth in the whole of this family are peculiar, they seem appressed against rather than to rise from the cardinal margin and are separated by deep sockets or pointed holes; the teeth themselves seem to be composed of one or two lamellæ, springing from the umbonal hollow and termi-
mating fan-like in sereral scallops or subsidiary tlat denticles. The groups relatel to this gellus are as follows:

PALLIAL LINE SIMPLE.

Kelliella (miliaris) Sars. Teeth well fignred by G. O. Sars. Size small; teeth small, short, angular, ligament largely internal.
Vesicomya (atlantica) Dall. Size variable to large, teeth lamelliform, long, very flat, the middle one hardly curved, hardly separable from the thin long posterior lamella, deeply severed from the anterior and largest lamella ; ligament wholly external.
Callocardia s. s. (C. guttata) Adams. Cardinal teeth arched in the left valve, short ; ligament in a deep groove, ehicfly external ; posterior lamella separate, thin, rather long.

PALLIAL LINE DEEPLY SINUATED.
Callogonia (Lecana) Dall. Anterior eardinal and middle lamella continuons, angularly bent like a flattened M; posterior lamella short, high, separate; ligament inset but wholly external. Right valve with mildle tooth strong decply angulated, posterior lamella absent or represented by a spur or point just below and behind the posterior limb of the midalle tooth; above this a socket for the reception of the posterior lamella of the other valve. The anterior lamella thin, coneave upward, its elge somewhat irregnlar, sometimes faintly notehed.
It is almost impossible by words to describe comprehensively these curions lamellar teeth; the reader may, however, with the-aid of the figures, understand fairly well how they are arranged. The teeth of Kelliclla are less lamellar than those of the other gronps, are shorter and more triangular. The gennine fry of Isocardia cor, with which Jeffreys confounded Kelliella miliaris, has much thinner, flatter, more parallel teeth, very like those of Vesicomya, plus a lateral tooth.

The group named by me Tcneriglossa in 1886 (Atopodonta of Cossman, 1887) may belong here, aud in that case would follow Callogonia, having a moderately simuated pallial line.

The species known to belong to the groups above mentioned are as follows :
I. Kelliella miliaris Philippi (+abyssicola Sars).
II. Vesicomya subquadrata Jeffreys sp.; V. atlantica, T. pacifica, and V. Adamsi Smith; T. pilula and V. venuste Dall.
III. Callocardia guttata A. Adams, C. allida and (?. Smithii Dall. The last was, before it was thoronghly studied, referred by me to Tesicomya.
IV. Callogonia Leeana Dall.

Subgenus ('ALLOCARDIA s. s.
Callocardia guttata A. Adlams.
Plate x, Fig. 5.
Callocardia guttata A. Adams, Aun. Mag. Nat. Hist. xirt, p. 307, 1864.
The figure above referred to is reproduced for comparison from the drawing of the unique left valve in the British Museum, for which I am
indebted to Edgar A. Smith, esq., assistant, British Musenm, in charge of the collection of Mollusca. It was found near one of the Japanese islands, Quelpaart, in the Kurile chain, in 48 fathoms, and externally is smooth, white, lightly maculated with yellowish spots.

Callocardia albida sp. nov.

Shell small, inflated, white, with a rery thin pale dehiseent epidermis; seulpture of rather coarse, somewhat irregular concentric lines and groores, in harmony with the ineremental lines; beaks high, stout, inflated; shell almost exactly the shape of Cytherea albida; lunule short, wide, marginated by a distinct groove; ligament short, wholly external ; esentcheon none, or undefined by any ridge; anterior end rounded, posterior end slightly more pointed; interior white smonth, the muscular scars faint, the pallial line simple, indistinct; teeth in the left valve two; one representing the fused middle and anterior tooth is formed by the ventral margin of the hinge-plate projecting laterally in a squarisi elongate lamina showing two short curves concave downward and meeting each other at a sliglit ridge, at the termination of which is a small indentation in the profile of the lamina; the other tooth is close to the dorsal side of the hinge-plate, wholly separated from the other lamina, than which.it is lower and less eurved; it lies directly under the ligament; altitude of shell 8 ; longitude 9 ; diameter $\boldsymbol{\tau}^{\mathrm{mmm}}$.
Hab.-U. S. Fish Commission Station 2762, in 59 fathoms, mud, east from Rio Janeiro ; bottom temperature $57^{\circ} \mathrm{F}$.
A single left valve was obtained. This speeies is quite near C. Adamsi from Sierra Leone, but has fuller and stouter beaks and a more elongated and Cytherea like ontline; the lunule is also smaller and proportionately broader; the teeth differ in small details, being stont and curved, not flat and low as in the typical Vesicomya.

Callocardia Smithii Dall.

$$
\text { Plate x, Figs. 1, 2, } 3 .
$$

Callocardia (Tesicomya) Smithii Dall, Bull. Mus. Comp. Zö̈l., XVirı, p. 439, Jıne, 1889.
Shell pale straw color or yellowish white, glistening, sculptured with fine somewhat irregular, rounded concentric incremental ridges, hardly elevated above the general surface; valves full, evenly rounded below and behind, with a few, inconstant, extremely faint, radiating impressions behind the beaks which do not essentially modify the margin or the seulpture; beaks rather anterior, full, not bulbons; a feeble impressed line proceeding from them marks the boundary of the lumule; above and below this are two other slight flexures not concentrated into lines, of which the lower one coincides with an extremely faint wave on the margin ; interior white, polished ; muscular sears narrow, the pallial line simple with an extremely faint flexure just hefore it joins the posterior adductor scar; sear of the pedal musele just above the anterior
adductor, small, elongate-triangular, deep; margin smooth simple. Longitude of shell 28 ; altitude 22 ; diameter $15^{\text {mum. }}$.

Hab.-U. S. Fish Commission Station 2754, east of Tobago, in 880 fathoms, globigerina ooze; hottom temperature 370.9 F .

A number of loose valves of this interesting species were obtained as above stated, but no specimens containing the soft parts.

On a cursory examination this species was referred to the Vesicomya section of the genus, but from a more thorongh study it became evident that it was more nearly allied to the typical Callocardic. The ligament is delicate and though somewhat inset is wholly external. The anterior dental lamina in the right valve has an elevated equilateral triangular point; the upper lamina is also triaugular, but has a short anterior side and a long gradual posterior slope, the edge of which is slightly undulated and grooved above, so that, while really continuons with the posterior lamina which is slightly thicker, a vertical view as in Fig. 2 gives the impression of two teeth. The anterior lamina is the largest. Close to the onter margin of the ligamentary furrow is a well marked ridge which forms the boundary of the escutcheon, but is hardly visible in a profile view of the shell.

Subgenus CALLOGONIA Dall.
Pallial line with a deep narrow simus.

Callogonia Leeana Dall.
Plate x, Figs. 6, 7, 8, 9.
Callocardia (Callogonia) Leeana Dall, Bull. Mus. Comp. Zö̈l., Xviir, p. 440, Jıne, 1889.
Shell narrow, elongated, slightly compressed, white, with a pale yellowish epidermis and a sculpture of fantly elevated fine concentric lines coincitent with the lines of growth; umbones not prominent; anterior end rounded; posterior end moderately, obliquely subtruncate rounded off above, slightly pointed below ; there is no line circumscribing a lunular space, and the ridge, if any, bordering the ligament is so fused with the margin of the ligamentary groove that the shell may be said to have no escutcheon; there are a few irregular extremely faint radiating lines, and a rounded ridge hardly defined extends from the beaks to the lower posterior angle. Internally the shell is smooth, white; the adductor scars larger proportionally and rounder than in C. Smithii, the pedal sear deep but relatively smaller; the pallial line is broad, with a deep angular sinus; the margin simple, smooth; in the right valve the anterior lamina is longest and is concave upward with a rounded profile; the middle lamina is strongly bent with the angle upward and is higher than the others; to it is attached the short thin posterior lamina which is the lowest of the three with a sort of socket above for the corresponding lamina of the other valve; the posterior
lamina is strengthened by a buttress from the ventral edge of the hinge; below the middle lamina is a deep pit; another pit is found above the anterior lamiua; the ligamental groove is well marked. In the left valve the middle tooth is thick and bent but with no pit below it ; a deep noth separates it from the anterior lamina; behind or above these two is a deep irregular groove; the posterior lamina is independent, straight, short, with a deep groove between it and the surface to which the ligament is attached. The altitude of a young but perfect specimen is 20 ; the length 28 ; and the diameter 12 mm . Fragments show that the species attains nearly twice this size.

Hab.-U. S. Fish Commission Station 2754, east of Tobago, in 880 fathoms, globigerina ooze; bottom temperature 370.9 F .

Figures 8 and 9 show the hinge of a well grown specimen. A view from below of the hinge of the right valve, from a fragment of a still larger specimen, shown by Fig. 7, will assist in making clear the complicated mechanism of the hinge.

This species, compared with the typical Callocardia, shows how short is the interval which in some cases separates species with a deep pallial sinns from species with none; another instance is the relation of Veneriglossa Dall (Atopodonta Cossman) with Cytherea. It is probable that neither of the Callocardice lave long siphons, thongh one has retractor muscles and the other none, or none to speak of. These characters are like the branchice, essentially adaptive and relatively superficial, and can no longer be regarded as of high systematic importance, except when correlated with other more fundamental features.

It is rather curious that a close inspection shows that the cardinal teeth of a young Isocardia cor. L. are more like those of Vesicomya than like those of Kelliella miliaris, with which Jeffiress confounded the young of the first mentioned species, to say nothing of Kelliella having not the slightest trace of a lateral tooth.

This species is named in honor of Prof. L. A. Lee, in charge of the scientific work on the Albatross.

VENERIGLOSSA Dall.

Teneriglossa (subgeuns of Cytherea) Dall, Bull. Mus. Comp. Zö̈l., xır, p. 275, 1886. Atopodonta Cossman, Mem. Soc. Roy. Mal. Belg., Xxi, p. 110, 1507.

Veneriglossa vesica Dall.
Plate xiv, Figs. e, 12.
Cytherca (Veneriglossa) resica Dall, op. cit., p. 275, xviif, 1. 440, 1889.
Нив.-Gulf of Mexico and West Indies, in 81 to 100 fathoms. This problematical shell is figured here for comparison with the preceding species of Isocardiacea.

Suborder VENERACEA.
 Family VGNERID E.
 Genus VENUS Limné.
 Subgenus CHIONE Muhlfeldt.
 Chione cancellata Linné.

This well known species, which ranges north to Cape Hatteras, was collected at Port Castries, Santa Lucia Island, West Indies; at Station 275 s, 90 miles southeast from Cape San Roque, Brazil, in 20 fathoms, shelly bottom ; and at the Abrolhos Islands, off the eoast of Brazil, near Balia.

Chione rugosa Gmelin.

This species, which is known from Hatteras sonth to Rio Janeiro and on both coasts of Central America, was obtained at Station 2758.

Sulgenus ANAITIS Römer.
Anaitis varicosa Sowerby (1853).
This species, which is abundant off Hatteras and fossil in several of our tertiary strata (under various names), was collected at Statiou 2758. It is very close to if not identical with Tenus alveata Conrad, 1831.

Genus CYTHEREA Lamarck.
Cytherea hebræa Lamarck.
Young specimens of this species were obtained at Station 2758.
Cytherea eucymata, sp. nov.
Plate xin, Fig. 11.
Cytherea sp. (No. 290) Dall, Bull. U. S. Nat. Mus., No. 37, pp. 5f, 57, August, 1889.
Shell thiu, inflated, concentrically ribbed, waxen white or pale brown, with clonds and zigzag fluctuations of madder brown, polished; adult with about fifty rounded slightly flattened conceutric waves with a short dorsal and long rentral slope, separated by narrow sharp grooves; these wares become fused in pairs or alternately obsolete and raised into more thin and elevated lamelle near the posterior dorsal margin ; radiating sculpture none, except a narrow ridge bordering the ligamental furrow and the groove which circumseribes the lanceolate lnnule; there is $n o$ escutcheou; margin elegantly rounded, a little straighter along tie ligamental border, outline ovate; beaks full, not prominent; hinge of the genus; the lateral tooth conic in the young, compressed in the adult; margin rounded, smooth; pallial sinus not quite reaching the vertical from the beaks, rounded or subtruncate at
its imner part. Adult, maximum longitude 40, altitude 32, diameter 26 , vertical from the beaks behind the anterior end 10 ; young, maximum lougitude 14.5 , altitude 11.5 , diameter 7.5 , rertical 4.5^{mm}.

Hiab. -Station 2402, between the Mississippi delta and Cedar Keys, in 111 fathoms, muddy bottom; stations 2604 and 2606 , off Cape Hatteras, North Carolina, in 25 to 34 fathoms, sand; west of Florida, in 50 fathoms (U. S. S. Bache); station 2640 and 2646, off the southern part of Florida, in 56 to 85 fathoms, sand; and station 2758,90 miles southeast from Cape San Roque, Brazil, in 20 fathoms, shelly bottom; temperatures 770 to 730.1 F .

This remarkably elegant species has about the form of Dione Kingi Gray as figured by Reeve (Conch. Icon. Dione, Pl. Ix, Fig. 36a) with somewhat the sculpture of D. grata and D. eryeina. It recalls in its coloration Tapes turgida Lamarck and T. lirata Philippi, minus their dark radiating bands. It is like none other on the east coast of America and has been for several years recoguized by me as undescribed, from the specimens in the National Collection.

Subgenus CALLISTA (Poli) Mörch.
Callista maculata Linné.
This species was collected at Station 2758.
Suborder TELLINACEA.
Family TELLINIDE.
Genus MACOMA Leach.
Subgenus CYMATOICA Dall.
Shell telliniform, without lateral teeth, with two small grooved cardinal teeth in the right valve, one in the left valve, and no laterals; with the external surface covered with wary sculpture not in harmony with the direction of the incremental lines; with the anterior portion of the shell longest, the posterior strongly flexed, and with the pallial sims deep but free from the anterior adductor sear in both valves.

Cymatoica occidentalis sp, nov.
Plate x, Fig. 11.
Shell small, thin, white, moderately full in front, compressed and strongly twisted to the right, behind; auterior part of the shell the longer, sloping from the beaks, gently rounded toward the base; beaks small, pointed, not inflated; posterior portion of the valves rapidly attenuated, compressed, rostrated and somewhat obliquely truncated; sculpture of small, narrow, rounded, nearly equidistant waves, not in harmony with the incremental lines and showing in different specimens slight differences of prominence and direction; in general they have a longitudinal direction, rising as they pass backward; those near the
margin are sometimes broken up into short segments, and on the opposite valves of the same specimen there are usually perceptible but not constant differences in the sculpture, which is fully reflected on the polished interior of the delicate valves; ligament thin, short; luuular area long, very narrow, smoother than the rest; rostrum transversely striated with two or three obscure radial ridges, the most anterior of which forms the boundary behind which the waved sculpture does not pass; interior polished, sears of adductors obscure; pallial sinus deep, rounded, reaching to or into the anterior third of the shell; teeth small, short, simple in the young, groosed on their onter surface in the adult, the single tooth in the left valve showing the grooving most strougly. Maximum longitude of shell, 12.5 ; altitude, 6 ; diameter, 3^{mm}.

Hab.-U. S. Fish Commission Station 2823, in latitude $24^{\circ} 18^{\prime} \mathrm{N}$., longitude $110^{\circ} 22^{\prime}$ W., off the coast of Lower California, in $26 \frac{1}{2}$ fathoms, fine sandy mud.
This interesting little shell gapes, if at all, but slightly and only at the tip of the rostrum.

Cymatoica orientalis sp. nov.
Plate x, Fig. 12.
Shell white, thin, resembling the last species, but with the beaks more central and less pointed, the posterior end broader at the more vertical truncation and less rostrate, the valves slightly flatter and the wary sculpture distinctly angulated at an oblique line radiating from the beaks somewhat forward; there are no visible radii on the rostrum, but the wary sculpture does not pass forward of a diagonal from the beak to the lower posterior angle-of the shell; the lunular area is wider and more deeply impressed than in C. occidentalis, and the posterior end of the shell is less strongly flexed. Maximum longitude, 9.5 ; altitude, 5.5 ; diameter, 3^{mm}.

Hab.-Samana Bay, Santo Domingo, in 16 fathoms, mud, Couthouy; also in the same depth at Cardenas, Cuba, from T. H. Aldrich, esq.

This little shell has been many years in my hauds awaiting a name. When an analogous species appeared in the Fish Commission collections from the Pacific it seemed a suitable occasion to put them on record together. The wary sculpture in this species is sometimes a good deal broken up anteriorly.

Subgenus MACOMA s. s.

```
Macoma brevifrons Say.
```

Tellina brevifrons Say, Am. Conch., vir, Pl. 64, Fig. I, 1834.
The shell, which I have identified as the true brerifrons of Say, though with some hesitation, agrees well, when joung, with Mr. Say's description and passably well with his figure. The latter is usually on the plate colored so that it does not agree with the text, which was published after Mr. Say's death. The adult shell is proportionally longer

Proc. N. M. 89—— 18
than the above-mentioned figure, and is characterized by a suffusion of dull rufons or orange color in the interior and toward the beaks, the tips of which, howerer, are usually paler. Stimpson, from a comparisou with Say's specimens, named the specimens found by him in Charleston Harbor T. brevifrons, and I have followed him.
The shell is rare in South Caroliua, extends to Florida and Tezas, is reported from the West Indies in several localities, and has been erroneously identified with T. candeana Orbigny.

Its southward range is now extended by the U. S. Fish Commission to Station 2764 , in 11. $\frac{1}{2}$ fathoms, oft the Rio de la Plata, in south latitude $36^{\circ} 42^{\prime}$ and west lougitude $56^{\circ} 23^{\prime}$, on a sandy bottom.

> Family SEMELID.E.

> Genus ABRA Leach.
> Abra longicallus Scacchi.

This well-known abyssal shell was collected at Station 2751, south of St. Kitts, in 687 fathoms, ooze; Station 2754 , east from Tobago, in 880 fathoms, ooze; and Station 2760, 90 mites north from Ceara, Brazil, in 1,019 fathoms ; temperatures $37^{\circ} .9$ to $39^{\circ} .9 \mathrm{~F}$.

Geuus ERVILIA Turton.
Ervilia concentrica Gould.
This species was collected at Station 2758,90 miles southeast from Cape San Roque, Brazil, in 20 fathoms, shelly bottom.

Genus SEMELE Schumacher.
Semele reticulata Gmelin.
This species was collected at Station 2758; at Stations 2765 and 2766 , off the Rio de la Plata, in $10 \frac{2}{2}$ fathoms, sand; and at the Abrolhos Islands, off the Brazilian coast, near Porto Allegre. It ranges northward to Virginia and the Bermodas.

Semele cancellata Orbigny.

This rery characteristic species was collected at Station 2758, which greatly eularges its known sonthward range. Its northern limit as far as known is the vicinity of Cape Hatteras, North Carolina.

Semele nuculoides Conrad.

$$
\text { Plate xiv, Fig. } 5 .
$$

Semele muculoides Dall, Bull. U. S. Nat. Mus., No. 37, p. 62 ; No. 371, August, 1889.
? Amphidesmu muculoides Conrad, Am. Jouru. Sci., xli, p. 347 ; Miocene Foss., p. 73, Pl. 41, Fig. 6.
HAB.-Stations 2597, 2602, 2607, 2608, 2610, 2611, 2612, 2615, $2617,2619,2622$, and south to the West Indies, in 2 to 124 fathoms, extending north to Cape Hatteras.

This curions little shell is probably the same as Conrad's Miocene fossil ; at all events it is fossil in the Miocene. I have received it under the name of Montacuta lirulata Carpenter, from the West Indies. It is yellowish, sometimes radiated with red, closely concentrically waved and quite compressed. It differs from most species of Semcle in its small size and erect beaks, but in nothing else so far as the shell is concerned. Semele cancellata, both in size and attitude of the umbones, forms a transition from this little member of the group to the ordinary type.

Order ANOMALODESMACEA.
 Suborder ANATINACEA.
 Family ANATINID.E.
 Genus ASTHENOTH $\nrightarrow R U S$ Carpenter.

> Subgenus BUSHIA Dall.

Bushia (elegans var?) Panamensis Dall.
Shell resembling B. elegans in all respects except that the single valve collected is proportionately higher, the umbo more central, the anterior end more evenly rounded and the posterior end shorter aud more vertically truncate. Maximum longitude of (right) valve 14 ; altitude 11.3 ; (semi) diameter 4 ; vertical of beaks behind anterior end, 8 mm.

Hab.-Station 2805, in 51 fathoms, mul, in Panama Bay.
It is very interesting to find Bushia on the west coast as Asthenotherus was found in Florida, each having first been described from the opposite shore of the continent.

Genus THRACIA Blainville.

> Thracia distorta Montagit.

Thracia distorta Montagn, Dall, Bull. Mus. Comp. Zoül., xir, p. 307, 1886; List of Marinэ Mollusks, U. S. Nat. Mus. Bull., 37, p. 64. No. 383, 1889.
This species has already been reported from Houduras as well as European seas, and was collected by the Albutross at Station 2764, in $11 \frac{1}{2}$ fathoms, sand, off the Rio de la Plata.

Thracia Stimpsoni Dall.

Plate xiif, Fig. 2.

Thracia Stimpsoni Dall, Bull. Mus. Comp. Zoöl., xII, p. 307, 1886.
This fine species was collected by the Albatross in 28 fathoms in the Gulf of Mexico, on the line between Tampa and the Dry Tortngas, at U. S. Fish Commission Station No. 2410. Its nearest relative is T. convexa Wood, from which it differs in proportious and sculpture. With the exception of the northern T. Conradi, it is the largest American species.

Family LYONSIID E.?

Genus LYONSIELLA Sars.
Lyonsiella radiata Dall.

Plate vin, Fig. 7.

Lyonsiella radiata Dall, Bull. Mus. Comp. Zö̈1., XViII, p, 442, June, 1889.
Shell large, thin, pearly, recalling L. gemma Verrill (=insculpta Jeffr. + ecostata Seguenza), but very much larger, higher, less rounded anteriorly, less pointed behiud, and more prodnced and ronnded ventrally; hinge simple, undulated, with a rather large, arched ossicle; exterior whitish, with a thin olivaceous epidermis raised over five ribs into rather high distant radiating ridges, to which mud adheres tenacionsly; ineremental lines distinct, silky, sometimes prominent; lunule in the right valre impressed, prodnced laterally, not marginated; interior pearly, with faint radiating sulei, corresponding to the external ridges; maximum altitude of shell, 13 ; longitude, 11 ; diameter, 8.5^{mm}.

Hab.-In Magellan Straits, at U. S. Fish Commission Station 2780, in 369 fathoms, mud; and at Station 2785 , off the west coast of Patagonia, sonth latitude $48^{\circ} 9^{\prime}$, in 449 fathoms, mud; temperatures $46^{\circ} .9 \mathrm{~F}$. in both eases.

There are a large number of acephalous mollusks, not necessarily nearly related, in which a true branchial septum exists. In a young Perna, supposed to be P. ephippium L., the inner edges of the etenidia are united to each other their whole length behind the foot. The outer edges are attached to the mantle, or visceral epiderm, so as to form a complete chamber, like that of Cuspidaria, but of which the derivation is radically different. In Modiolarca trapesina Lam., from Cape Horn, the cteuidia, from below the anal siphonal orifice to and around the foot, are united as in Perna. The chamber thus constituted is crammed with the young fry at the proper season. In Lyonsia beana Orb. the united ctenidia are attached abore the rudimentary siphonal septum, extend forward to and aromnd the foot. They are attached to each other and to the mantle, or to the rentral surface of the visceral mass, by their edges and form a most complete chamber, a true ctenidial septum. There are, however, no orifices in this or in any of the species with a strictly etenidial septum corresponding to the septal perforations in Poromya or Cuspidaria.

In Lyonsia radiata we have a similar state of affairs, exeept that the anterior inner edges of the gill are not so closely united around the foot. The part played by the siphonal septum in this species is insignificant; it is in fact hardly perceptible. The infolding of the mantle edge around the siphon is very wide; its onter edge is nearly plain. Within this edge a short distance is an elevated ridge, with a single row of small, rounded, ocellus-like tubercles on each side of it. A wide space sep-
arates this range of processes from the margin of the branchial orifice, which is profusely papillose with arborescent papille. A lunate depression lies between this and the much smaller, plain-edged, nearly linear anal orifice, while in frout of it the pedal opening forms a minute narrow slit, with granulated margin. In this form the palps are represented by a slightly raised edge around the mouth, not produced or elongated at the sides. A languette or curtain valve hangs behind the branchial orifice below the narrow septum.

The balance of characters will perhaps carry Mytilimeria and Lyonsiella to the Anatinida, or a family by themselves, rather than to the Verticordiida, where I first placed them. But they are transitional in their relations, and in spite of the relations between the form of the gills in Lyonsiella aud Lyonsia, I am still inclined to think the former almost equally close to Verticordia. A supposed discrepancs, noted by Pelseneer, arises from the fact that, instead of comparing Lyonsiella with a genuine Verticordia, like acuticostata, as I did, he compares it with a species of Poromya, which is, of course, a very different thing.

Family VERTICORDIID.E.

Genus VERTICORDIA Wood.
Ferticordia (Wood) Dall, Mus. Comp. Zö̈l. Bull., vol. xiI, p. 285, 1886.
Verticordia acuticostata Philippi.
F. acuticostata Dall, op. cit., pp. 285, 288.

Hab.-Cuba, Barbados, and Gulf of Mexico, Blake expedition; Mediterranean, Philippi; North Atlantic, Jeffireys; Japan, A. Adams. U. S. Fish Commission Stations 2659, off Cape Canaveral, in 509 fathoms, bottom temperature $45^{\circ} .2$; and 2750 , off St. Bartholomew, West Indies, in 496 fathoms, sand, temperature $44^{\circ} .4$.

This species grows to a considerable size, the two Fish Commission stations affording valres 19 and 20.5^{mm} in height respectivels.

Soft parts.-Another specimen, and a re-examination of the one reported on in 1886, confirm the description then given. There are no palpi, the anterior pair are wholly unrepresented, the posterior or lower pair may be represented by two small ronuded hardly elevated tubercles between the month and the anterior ends of the gills. The foot is relatively extremely large, round, and stopper-like. The gills in the second specimen are clearly alnate, as in Pelseneer's figure of Lyonsiella papyracee Smith (Chall. Rep. Anat. Moll., Pl.1II. Fig. 1), except that they are underlaid by the solid fleshy siphonal septum, and do not serve to supplement that septum as they are alleged to do in Lyonsiella abys. sicola. They are proportionately very much smaller, hardly reaching behind the middle of the foot. I suspect that the free end of the gill in my first specimen was separated by a lesion, aud is not normal, but that the gill is always aduate in the adult condition.

The septum is thick and fleshy, quite destitute of perforations or orifices except that in which the foot stands.

> Verticordia (Trigonulina) ornata Orbigny.

This species, already known from widely separated regions, was collected 90 miles sontheast of Cape San Roque, in 20 fathoms, at U. S. Fish Commission Station 2755 .

Verticordia perplicata sp. nov.
Plate IIII , Fig. 1.
Shell large, strongly plicated radially, with the hinge of Terticordia (restricted) and a coarsely granulous finely wrinkled external surface of a dark brown color; anterior surface with two or three strong and several smaller obscure radiating ribs which undulate the margin; behind these is the strongest broad rib with a romnded top followed by a wide sulcus, theu by two somewhat smaller and one still narrower rib with increasingly barrower interspaces; then a wider, stronger, and shorter rib, a deeper sulcns, and lastly liy the rounded posterior area; with these principal radii are traces of much finer ones, differing in different individuals, while the eight primary radii seem pretty constant in position and relative size ; lunule rery small and deeply impressed; behind it in the right valve is a single strong conical or slightly exca. vated tooth, convex below and short; immediately in front of the beaks the hinge line is narrow with a narrow groove for the cartilage and a short, wide, subtriangular ligamentary basis; beaks small, incurved; underneath and a little in front of the cardinal tooth is a small, deep, muscular scar; anterior adluctor scar large, not deep; posterior ditto even less impressed; margins of the ralves thin, undulated by the sculpture, not crenulated; interior pearly white, grooved in harmony with the external sculpture; maximum longitude of shell, 33 ; maximum altitude, $3 \tilde{5}$; diameter, (about) 28^{mm}.

Нлв.-IT. S. Fish Commission Station 2807, in 812 fathoms, mud, near the Galapagos Islands; bottom temperature $38^{\circ} .4 \mathrm{~F}$.

Two nearly complete right valves, fragments of several others, and fragments of two left ralves were collected as above stated. When perfect this must be one of the finest species of the genus. The surface is very finely, irregularly wrinkled, with an abundant supply of rather minute pustules, rounded in the specimens but perhaps more pointed in the perfect shell. A more minute description of the hinge mist await material in better condition ; the data now given are quite sufficient to dentify the species.

Family (UUSPIDARIIDE.
Genus CUSPIDARTA Nardo.
Cuspidaria Nardo, Revue zö̈l., p. 30, Jan., 1840.
Nenra Gray (1834), not of Rohineau Desvoidy (1830).
Cuspidaria Dall, Bull. Mus. Comp. Zö̈l., XII, p. 292, Sept., 1886.
Cuspidaria patagonica Smith.
Necera patagonica S.nith, Challenger Lamellibranchs p. 39, Pl. vir, Figs. 5, 5a-b, 1885.
Hab.-U. S. Fish Commission Station 2751, in 687 fathoms, ooze, off St. Kitts, West Indies, temperature 40° F. Station 279ٌ, off Manta, Ecuador, in 401 fathoms, mud, temperature 43°, ete.

A fine specimen of this species, measuring 44^{mm} in length and 14^{mm} in transverse diameter, was dredged off Manta; other specimens were found in dredgings from the whole eastern coast of South America, the western coast of that continent, and northward as far as Lower California. The larger specimen afforded the following notes.

The siphoual septum, by which name I shall refer to the dividing septum of the peripedal chamber, extends forward from the proximal end of the siphons to the anterior adductor. It is dicisible into three areas, a longitudinal central muscular area oceupying about two-thirds of the whole septum, and on each side a less mnscular, thin, and teuse membranous strip, which is comnected with the inside of the valves and leaves the imprint on the shell which wonld ordinarily be taken for the outline of the "pallial sinus." The central muscular area is attached by a bundle of muscular fibers above each adductor on each side of the median line. All four points of attachment leave well-marked scars on the shell. I have shown elsewhere that these muscles, if not homologous with, at least perform the functions of the siphonal retractors of ordinary Pelecypods, and in forms like Poromya muctroides, where the usual retractors are present, the siphonal septum is destitute of muscularity, or possesses it only to an inferior degree. The posterior septal muscles are smaller and rounder in section, more rertical in direction, and more widely separated from each other than the anterior pair. The latter are narrow and elongated on their surface of insertion, and but for the separation of the valres would nearly tonch in the median line. The principal body of fibers on the plane of the septum is longitudiinally arranged; another series crosses the septum in an arched manner toward its extremities, especially behind, while there are indications of still smaller series of more or less radiating fibers knitting the whole fabric together and to the shell.

The siphonal septum in this species divides the cavity of the shell unequally, the upper portion being smaller than the lower. In the upper, sustained especially by a median fibrous mesenteric band, is suspended the risceral sac. Viewed from above, it is subcordate in profile; from the side it seems acutely ovoid. It occupies, as contracted by alcohol, abont haif the cavity above the septum. The valve of the
aual siphon is represented above the septum by a thin rertical wall of membrane pierced by a relatively small simple central orifice. The valve of the branchial siphou below the septum is composed of three rather thickish processes, one hanging vertically is short, wide, and represeuts the languette in Cardium; the lateral processes are somewhat longer and obliquely set, the whole forming a large subtriangular opening with three partially overlapping curtains. Passing backward on the ventral surface of the septum, aside from the streakiness due to the fibrous coarse muscular tissue, there is a distinct narrow median depression behind the foot, except just behind the edge of the foot, where the surface in all the forms with a muscular septum is elerated like a wave rising about a solitary rock. The foot is slender, elongated, slightly geniculate, with a small byssai groove behind. Immediately in front of the surface is depressed about the small and inconspicaous mouth. Here the anterior palps are almost wanting, but the posterior, though abnormally small, are elevated above the surface and strongly transversely striate. In front of the palps is a strong ridge of tissue, behind the anterior commissure of the lobes of the mantle. Here a narrow horny or chitinous gusset strengthens the commissure, above which is a sort of pocket or shallow indentation, above which the external margin of the mantle finally joins. The gusset is narrow, concave in the middle, with its euds spatuliform and shows brown through the white tissues, like the jaw of a Gastropod.

If the surface of the septum near the foot be closely scrutinized there will be seen on each side four slight prominences. The anterior pair are on each side of the mouth, the second and third pairs by the sides of the foot, the fourth behind the foot, all situated in the thickest part of the museular portion of the septum. The posterior pair have two lips, the others three to each prominence, and on gentle pressure with a fine probe it will be found that a small circular orifice passes somewhat obliquely through the septum and communicates with the upper chamber.

These passages are not always complete, howerer; for by means of careful sectionizing I found the third pair imperforate in a fairly grown specinen of C. vostrata, while in several young specimens the two posterior pairs seemed imperforate. In a specimen of C. arctica var. glacialis I found five orifices on each side, showing that the number is not inrariable.

The lips to these orifices are not prominent, much less so, indeed, than in Cetoconcha or Poromya. The office of a gill must, therefore, as suggested in 1886, by me in the first part of my Blake report (p. 303), be performed by the surface of the septum or by the lobes of the mantle. This is a very different view from Dr. Pelseneer's idea that the septum is itself homologous with the ordinary gills of Pelecypods.

By cutting the lobes of the mantle away, aud carefully turning back the septum as a whole, extracting the foot from its socket, we see the
simple oblique upper ends of the septal orifices. What can their office be? I suppose that they serve to almit fresh water to the upper chamber, which I believe to be utilized in some, if not all, instances as a marsupium. It is probable that by suitable muscular contractions, the septum will operate somewhat like the washer of a pump ralve, and that the upper chamber can be filled or emptied of its contained water at will.

I beliere the septum in Ouspidaria to be homologous with the ordinary siphonal septum, only more prolonged ; and that its musenlar tissue is the equivalent of the siphonal retractors of ordinary Pelecypods. I do not regard it as in any mamer homologous with the normal etenidia.

Cuspidaria (?) monosteira sp, nov.
Plate viif, Fig. 5.
Shell swall, inflated, stont and stroug, with a siugle strong rertical keel and much fainter concentrie sculpture; color white, with a very thin, pale epidermis; umbones nearly central, anterior end evenly rounded from the beak to the basal end of the keel; posterior end rostrate, the rostrum short, wide, abruptly truncate ; concentrie sculp. ture of rather strong incremental lines, which at first are varied by regularly spaced, rather sharp, distant, elevated lines; later these become obscured in the stronger, more crowded, and rather irregular incremental lines; a faint ridge extends from the beak to the lower angle of the rostrum, the only other radial seulpture is the exaggerated, high, flattopped, vertical keel; this projects from the rounded base and interrupts its curve; interior smooth, scars hardly perceptible; in the left valve the hinge-line is arched or rather angulated in the middle; there is a strong posterior lateral tooth, no auterior lateral or any cardinal teeth; the fossette is small, posteriorly inelined, and continuous with the margin of the hinge ; maximum longitude of shell 5 ; altitude 4.25; diameter 5^{mm}.

Hab.-U. S. Fish Commission Station 2760, 90 miles north from Ceara, Brazil, in south latitude $120 \pi^{\prime}$, west longitude $37^{\circ} 17^{\prime}$, in 1019 fathoms, bottom temperature $39^{\circ} .4^{\prime} \mathrm{F}$.

Only a left valve of this remarkable and very characterististie little shell was obtained. As the left valve is the uncharacteristic one as regards the hinge, it is not practicable to say to which section of the genns this species should be assigned, but its characters agree with those of the left valve of Nerera pulchella H. Ailams.

> Cuspidaria (Cardiomya) striata Jeffreys.

This species whieh ranges northwarl to the Aretic Seas and whose sonthermmost known range was Florida Strait, was colleeted east from Rio Janeiro, at Station 2762, in 59 fathoms, muddy bottom. This gives an immense extension of its sonthward range.

Subgenus LUZONIA Dall d Smith.

Both valves without lateral teeth, right valve with an anterior cardinal tooth, left valse edentulons; exterior concentrically striate; fossette narrow, parallel with the cardinal margin under the apex. Type Neara philippinensis Hinds, from Lazon and Mindanao, Philippine Islands.

This is Section II of Smith's arrangement of 1885, in the Report on the Chatlenger Lamellibranchs, p. 37.

Cuspidaria (Luzonia) chilensis sp. nov.

Plate xiif, Fig. 13.
Shell white, thin, polished, under a rusty brown, dull, caducous epidermis; beaks not prominent, nearly central; anterior hinge-margin thin, sloping evenly and then evenly romded to the arcuate base; posterior hinge-margin declining somewhat less, nearly straight, at the end of the rostrum evenly rounded over, the end of the rostrum being rounded, not truncate. On the rostrum is an obscure ridge extending to the umbo; in front of this ridge is a wide shallow sulcus by which the basal margin at the beginning of the rostrum is rendered a little concave; there is a faint ridge or thread close to the posterior hinge margin in the left valve, but none in the right; sculpture of fine silky concentric lines, but no radii; interior polished, with a few fine radiating strix; pallial line simple, not sinuated, vertically truncate at the beginning of the rostrum; hinge margin thin, edentulous except for a small triangular lamina in the right valve in front of the fossette; fossette narrow, directed backward, parallel with the hinge margin; ligament thin, stout, brown, re-enforced below with a narrow elongate-triangular ossiculnm; maximum longitude, 11; altitude, 8 ; diameter, 6.6 ; vertical of beaks behind the anterior end, 6^{mm}.

Hab.-Station 2791, off the southwest coast of Chili, in 677 fathoms, mud; temperature 3 ;0.9 F.

This species has the mantle margin simple, the siphous extremely short, retracted by the septal muscles; the ova project into the anal chamber from the surface of the visceral mass in rounded lobules, much as in Myonera; a number of the dehiscent ora were retained in the anal chamber. There were four septal orifices on each side; their apertures simple, oval and oblique; the septum was rather muscular, but not solidly so as in Cuspidaria; its surface was heaped up in sundry wave-like prominences behind and on each side of the foot. The palpi were extremely small, the lower ones nearly absent; the foot was short, stout, and subconical; the anal chamber quite small.

Genus MYONERA Dall.

Myonera paucistriata Dall.
Plate xin, Fig 12.
Myonera paucistriata Dall, Bull. Mns. Comp. Zö̈l., xir, p. 302, 1886.
Neera paucistriata Dall, Bush, Trans. Conn. Acad., vii, 1, 473, $1=85$.
Hab.-Florida Keys and Windward Islands, in 339 to 464 fathoms, bottom temperature $41^{\circ} .5$ to $45^{\circ} \mathrm{F}$. U. S. Fish Commission Stations $2644,2675,2751$, and 2754 , ranging from Cape Fear, North Carolina, to Tobago, in 193 to S80 fathoms, temperatures $27^{\circ} .9$ to $43^{\circ} .4 \mathrm{~F}$.

To the description already published of the soft parts of this extremely fragile and delicate form several points can be added from the examination of the fresh specimen. The only correction to the original description relates to the opening of the anal siphon, which is a minute eircular orifice in a delicate membranous area which in life probably projects in a dome-like manner, but in alcohol appears tense and flat. The opening is into the upper portion of the peripedal chamber, of course, as in the other species. That which I took for the anal opening in the first specimen examined was an accidental lesion, while the true anal opening from its minuteness was overlookerl.

The mouth, as stated in 1886 , is a simple opening without palpi. The latter are represented, if at all, by a delicate slightly elevated ring of tissue which surrounds the circular mouth. The absence of gill lamine is fully confirmed. The septal orifices on the rentral surface are hardly observable without the closest scrutiny, thongh easily visible on the dorsal surface of the septum. There are eight, as in the Cuspidaria patugouica, and their lips slightly elevated, usually appear triple, so as to give a triangular aspect to their junction. When sounded by a delicate probe they appear subtubular.

The muscular tissue of the septum is concentrater in two bunches of coarse fiber-bundles, which radiate from the posterior onter corners of the septum, suggesting that the fibers, usually devoted to retracting in a nearly rertical plane the siphons toward their angular insertion (pallial sinus) on the shell, are here spread in a horizontal plane. Beside the fasciole of fibers at the corners, there is a loosely arranged central bundle behind the foot, while the rest of the septum is more thin and fibrous, and the vertical roots of the septal muscles far less strong and prominent in proportion than in Cuspidaria. The arrangement of the fibers of the muscular tissue is singularly loose, and in the central area irregular; quite different from the solid tissue of the septuin in lerti. cordia, or the compact bands observable in Cuspiduria.

The most noticeable feature in this specimen was the condition of the ovaries. These ramified over the posterior part of the visceral mass, terminating in bifurcated or trifurcated sacs, largest at their distal extremity, and somewhat fig shaped. These were crammed with ova and projected from the surface of the visceral mass into the upper chamber
above the septum. All were turgid; some had already burst and partly discharged their contents into the chamber; others seemed on the point of doing so; the alcohol had coagulated the escaping ova in situ, in the most perfect manner, the whole process thus being displayed. It is probable, as suggested by me in 1886 , that the chamber serves to some extent as a marsupium or shelter for the ova and young, and that they are not discharged into the surrounding element at once. This is undoubtedly the case in Modiolarca.

Family POROMYID.E Dall.

Poromyide Dall, Bull. Mus. Comp. Zö̈l., xir, p. 230, 1556; xvili, p. 452, June, 1889.
The characters of this family are peculiar and exhibit an extreme specialization in the matter of the siphonal septum and the development of new breathing organs upon it, while the normal ctenidia have become obsolete. As the matter has been discussed with, as I beliere, erroneous conclusions and assumptions by Dr. Paul Pelseneer in his account of the A natomy of Mollusks in the series of reports on the scientific results of the Challenger expedition, it seems well to include here the data and couclusions to which a study of the Fish Commission and other material has conducted the writer. This has already been stated elsewhere, in the appendix to my Report on the Blake Mollusca, Part II, but as that publication is likely to be somewhat restricted in its audience, compared with the U. S. Fish Commissioner's reports, it is hardly necessary to apologize for introlucing the same matter here; especially as it is based directly on the Albatross collection. Part of the data will be found under the heads of the several species, the rest is here assembled for reference.

In 1886 I separated from Poromya the forms which, when adult, have the hinge teeth obsolete, under the name of Cetoconcha. This group included not merely those with a double posterior row of moditied septal orifices on each sid', such as C. bulla, the type, and C. margarita, but also certain species of Poromya, in which the hinge teeth are feeble or obsolete in the adult, while in the typical Poromya they continue strong. I called attention to the fact that the soft parts of these species did not differ essentially from Poromya, but hardly felt justified in separating them from the typical Cetoconchue. It is probable that it would be better for them to form a section of Poromya which may be called Cetomya; while the typical Cetoconcha may perhaps be generically separated from Poromya. The group in question was named Silenia by Mr. E. A. Smith, in his report on the Challenger Lamellibranchs, but that name had already been used in zoölogical nomenclature, and so was preoccupied. The observations of Pelseneer on the anatomy of Silenia leave no room for doubt that it is identical with Cetoconcha, as represented by its type and by C. margarita. Now that wider research has shown more clearly the characters of Poromya and Cetoconcha, the attempt of 1886 to diaguose both forms in a single definition seems confuserl, but
with this explanation it should be clear enongh that the facts were obserced and recorded in members of each gronp, and that the apparent confusion in the diagnosis resulted from a feeling of conservatism in the * matter of subdividing genera; a proceeding which has, of late years, on some occasions been so shamefully abnsed.

The researches of the U.S. Fish Commission have added some most interesting and peculiar species of this family, which are more fully described in another part of this report. The forms not so described have been grouped together here.

Cetoconcha bulla was described rather fully by me in 1886 , and that description merely requires the addition of the statement that the lamella described are subtubular and form the lips to the septal orifices. In using the term "ventral surface" at that time for the under side of the septum and "body cavity," the reader will not be misled into the supposition that the visceral mass was the "body" intended; for, though the words may hare been ill chosen, the relations of the visceral mass were clearly stated, althongh the very ímportant relation of the upper chamber to the anal siphon was not understood at the time.

There is in this species a distinct bunching of the musenlar fibers at the posterior onter corners of the septum, from which points they extend in a somewhat radiating manner. The soft parts, though more rotund and with a different number of septal orifices, resemble sufficiently those of Cetoconcha Sursii Smith, as digrammatized by Pelseneer. For each orifice two lamelle are usually counted in the report of 1886 , as the lips of the septal orifices generally appear paired and arched, forming a segment of a circle. In C.bulla, in the anterior series, there are five orifices on each side; the inner posterior series have three to five and the onter posterior series two, or possibly three, orifices each. The number of posterior orifices is not the same in the two specimens of C. bulla examined.

In none of the specimens of Cetoconcha examined by me were the inner ends of the four posterior series so widely separated as in Pelseneer's Fig. 9 of Silcnia Sarsi. They always seemed closer together, and more evidently radiating from a central eleration on the septum behind the foot. But too much stress must not be laid on the discrepancies of his diagrams, which are not and do not appear to be intended for exact and complete portraits. In this species a trace of the lateral arrangement of the siphonal muscles remains, while compared with Cuspidaria the septal muscles are still in a transitional state.

Cetomya elongata Dall. In the single specimen of this form the branchial areas are composed of lamellae, between which at their bases are narrow fissures, bridged longitndinally by slender fibers, which act as regulators. In this species the two areas are similar, and resemble those of Cetomya tornata Jeffreys, as fignred by Pelseneer.

Cetomya albida Dall. In young specimens of this aud other species
the membranes of the septum, etc., are extremely delicate. The use of too concentrating hardening agents or the incautious tonch of a probe iwill produce lesions which may be indistinguishable from normal fissures. To make sure that nothing of this sort shall happen, it is necessary to float the soft parts in a cup of water and turn them about with delicate forceps. This is not convenient in all respects for observation, lout with time aud patience the characters may be made out.

Young specimens of this species show the lamellar areas as usual, with the depressions abore them, in the floor of the upper chamber, but the fissures are not open; a fact which leads me to believe that they appear ouly with maturity. A very delicate membrane seems to hold the distal margins of the lamellie together, so that a delicate probe passes over without separating them.

General considerations on the nature of the septum in Poromyida and Cuspidaridte.-The facts above and others elsewhere stated indicate that the septum in these groups is essentially a prolongation forward and a specialization of the ordinary siphoual septum. The septum, as pointed out in Cardium, may be so prolonged, while the normal gills are fulizy developed aud mucounected with it. In Verticordia it may be so prolonged, and may have acquired a conspicuonsly fleshy texture without fissures, while the gills lie prone upon it, more or less aluate. The mnscular apparatus by which the siphons are retracted, and whose normal points of origin are at the side of the ordinary septum, appear to be shifted to its surface. Different species show this process in different stages of completion; and in the only case among the Poromyas, where the fibers follow the normal direction in other Pelccypods, the septum is destitute of the muscular structure which is so prominent in the other Poromyas. In the specialization of the septum the masculatiou develops from behiud. When branchial lamine are situated upon the septum, and are not simply the ordinary etenidia in an adnate condition, the addition of a second series is made at the posterior end, and all the branchial areas appear to receive their blood supply from behind.

There is not a particle of evidence to prove that the septal branchial lamellie of Poromya and Cetoconcha are homologons with the etenidia of Terticordia, Lyonsiella, Perna or Cardium. The fact that Cuspidaria has neither ctenidia nor any specialized lamine on the septum lends probability to the assmmption that the two series represent a parallel among these Pelecypods to the ctenidia aad the peripedal lamine in Acmera, scurria, and Putella, among the Iocoglossa. That is, that the septal lamine are a new and special development, which functionally replace, but are not homologous with, the original ctenidia. If this view is doubted, the burden of proof lies upon those who call it in question.

It may be asked whether any hypothesis can be suggested by which this peculiar specialization may be accounted for. The law of economy
in development, which ealls for the maximum of function with the minimum expenditure of tissue, and the other rule, which assoeiates with greatest vigor of life the most successful oxygenation of the blood, together with the obvious benefits to be derived from temporary protection of the newly hatched larvæ, will enable us to suggest an answer.

The prolougation forward of the siphonal septum, especially in forms with short siphons, like Poromya and Lyonsiella, will evidently promote successful aeration of the blood by cutting off from the branchial chamber the water of the anal chamber, fouled more or less by the effecte products discharged into it. A certain amount of fibrous tissue must be developed to form this septum. It is clear that an eeonomy of tissue would result from the transfer of retractorial functions to the septum and the obsolescence of the lateral retratile musenlature. A further economy would result from the utilization of this large sheet of tissue for branchial purposes, and a diminution of the tissue previously expended in the mass of the ctenidia. The habit of the larver, so common among Pelecypods, of nestling for safety in the branchial folds, would lead directly to the utilization of the ehamber as a refuge. But a elose ehamber sueh as we see in Terticordia would, from the less pure character of its contained sea-water, be less favorable than one into which the water could be more freely admitted by any means which would not imply an admixture of the foul water with that of the branchial chamber below. A system of orifices like those of Myonera would accomplish this. A subsequent development of the muscular tissue of the septum, so that it could operate somewhat after the fashion of a pump and voluntarily frequently reuew the water in the anal chamber, would obviously be beneticial. By the effect of stimulation the margins of the orifices thus subjected to repeated strong currents of fresh water would be likely to undergo a speeialization of respiratory functions as compared with the rest of the surface of the septum, which would result in something like the tubular gills of Cctoconcha, or the lamellac of Poromya.

The gradual diminution of the etenidia and increase of the area of the siphonal septum is illustrated by such a series as Lyonsia, Lyonsiella, and Verticordiu, all of which possess true etenidia.

The gradual specialization for branchial purposes of the septum after the extirpation of the ctenidia wonld be illustrated by the series from Myonera and Cuspidaria to Cetoconcha and Poromyce.

While the above chain of hypothesis harmonizes with the observed faets in a satisfactory manner, it is stated merely as a possible hypothetical explanation, and not as a theory to whieh the writer must stand permanently committed.

General summary.-Premising that in this article the word ctenidium is employed to designate the normal typical gill of Peleeypods, in any of its modifications, as opposel to temporary or local branchial organs of different origin, the facts just reviewed may be briefly summarized.
(1) In many groups of Pelecypods the ctenidia are more or less united behind the foot, so as to divide the peripedal chamber into an upper or anal and a lower or branchial portion. In these cases (Perna, Modiolarea, for example) there is no important modification of the structure of the gills, and the septum is truly branchial in character, and the siphonal septum takes no part in the formation of the partition.
(2) In nther forms, the siphonal septum is extended forward to form a partition either (A) unmodified (Cardium), (B) thiekened without orifices (Verticordia), (C) assuming a retractile function (Cuspidaric) with orifices, (D) only partially retractile (Dermatomya) with single lateral series of orifices, or (E) with an incomplete donble lateral series of orifices (Cetoconcha). In these cases the breathing organs may be (A) unmodified ctenidia, (B) depauperated adnate cteuidia, (C) the general surface of the septum withont ctenidia or specialized lamellæ, (D) with only specialized flat lamellie, or (E) with specialized subtubular nroliferations. In these cases the structure of the septum appears to be wholly independent of the ctenidia, though in Verticordia they are adnate upou its surface.
(3) There is one form (Lyonsiella abyssicola) in which the siphonal septum and the ctenidia are stated to be matually attached, so that the septum may be said to be of a compound formation, though in another species of the same genus (L. vadiata) the septum is of the kind deseribed in paragraph 1. The first statement stands in need of confirmation.
(4) The orifices in the septum of Poromya seem to be closed, or partly elosed, in youth, and open with the attaimment of sexual maturity.
(5) The anal chamber, as indicated in 1836 , seems to fill the office of a marsupium.
(6) The tissues of the septum may therefore be derived from structures diverse in their origin, in some cases ctenidial and anterior, in others siphonal and posterior.
(7) Finally, from these facts it is evident that Dr. Pelseneer's as sumption, that the septum is essentially ctenidial in its origin, is nnwarranted, and his group Septibranchia, as defined by him, is founded on an error of observation. While as a group-name it may be used to indicate features of structure whose origin he misunderstood, yet, from the purely adaptive nature of these features and their variatious in forms otherwise closely related, the mame has no claims for adoption either in a strictly genealogical or an eclectic system of classification. It may be added, that the "proof" that Poromya and Silenia ($=$ Ceto. concha) are more nearly related to each other than to Cuspidaria, which Dr. Pelseneer claims to be his work (op. cit., p. 25), had beeu published by me more than two years previous to the appearance of his paper, and exemplified in the classification I then proposed: a classification which nothing since publishel has pretended in any way essentially to
modify. This classification, angmented by the new discoveries of the past three sears, may be explessed in brief as follows:

Family Cuspidariide: abranchiate, siphoseptate, septum foraminate.
Genus Cuspidaria (ete.) with long siphons; oral palpi olssolete.
Genus Myonere, short siphons; oral palpi absent.
Family Poromyide: septibranchiate, siphoseptate.
Genus Poromya: teeth strong; oral palpi large; foramina of septum slit-like, between the close-set lamelle arranged in two interrupted longitudinal series; pallial simus obsolete ; surface of shell granular.
Subgenus Dermatomya : shell not granular; pallial siuns developed; hinge strong.
Subgenus Cetomya: shell granulons; pallial sinus obsolete; hinge teeth obsolete in the adult.
Genus Cetoconcha: linge teeth. obsolete in the adult; pallial simus obsolete; siphoseptum foraminate, the foramiua arranged in fonr longitudinal series, solitary, the subtubular lips filling the office of gills.
Family Ferticordida: siphoseptate with small adnate ctenidia; oral palpi alnost obsolete ; septum imperforate.
Lyonsia and probably Lyonsiella may be called branchioseptate, and should be referred elsewhere.

Genus POROMYA Forbes.
Poromya cymata sp, nov.
Plate viif, Fig. 4.
Shell small, orate, inequivalve, the right valve most inflated and larger; hinge of the normal Poromya like P. granulata; umbo in the right valve high, inflated, prominent; auterior end rounded; posterior end with a narrow, sharp keel radiating from the umbo between two shallow, wide, gently excavated furrows which undulate the margin; surface covered with rather sparsely set granules, coarser toward the margin, finer on the umbo and posterior waves and disposed in radiat. ing lines; left valve (as in Corbulu) proportionately longer and less high and with deeper excarations where the furrows come to the margin; the furrows are also wider and extend further forward on the valve, which is less inflated than the right valve; the gramuations, too, seem more close set and a little more irregular; there is no lunule or escutcheon; the epidermis is pale yellowish, mader whicis the surface seems iridescent; the interior is brilliantly pearly; the muscular scars are faint, the pallial line simple, with some flexnosity near the posterior scar, but too irregular to be termed a simus; the whole interior shows indications of radiating strif which appear as marked grooves or cremulations on the basal margin of the valves. Right valve, altitude 10; longitude 9 ; dianeter 3.5 mm . Left valve, altitude 8.5; longitude 11; diameter 3^{mm}. These valves are not pairs.

Hab.-At U. S. Fish Commission Station 2762, east of Rio Janeiro, in 59 fathoms, mud hottom; temperature $57^{\circ} .1 \mathrm{~F}$.

Proc. N. M. $89-19$

Only detached valves of this handsome and strongly seulptured species were obtained. Its nearest relative is a Korean species represented by an imperfect valve collected by Captain St. Joln, in the Jeffreys collection. The Korean shell is less strongly furrowed and the furrows are more longitudinal than in the present species. P. cymata is notable also for the crenulation, or rather the vertical grooving of the internal basal margin, a feature 1 do not remember noting in any of the other species. The pallial line is more irregular as it nears the posterior adductor sear than in the type of the genus, but it does not show a definite sinus as in Dermatomya. The species is evidently very near the border line and its septum will probably be found to be less musealar than in such species as P^{P}. gramulata.

Subgenus CETOMYA Dall.
Poromya microdonta sp. nov.
Plate vili, Fig. 6.
Poromya subleris Dall, Bull. Mus. Comp. Zö̈l., xviir, p. 448, 1889; not of Verrill.
Hab.-U. S. Fish Commission Station 2793, in 1,685 fathor.s, ooze, about 125 miles eastwarl from Chesapeake Bay, bottom temperature not taken, but that of the next station, near by, was $36^{\circ} .3 \mathrm{~F}$.

In this species, by carefully dissecting away the septum, which presented much the same appearance as that of P.granulatu in Pelseneer's diagram (op. cit., Pl. III. Fig. 7), several interesting facts were disclosed. The posterior lamella were not separated by fissures at their base. This seemed evident on an external view, but was made more certain by an inspection of the upper surface of the septum, where these openings, when they exist, are always conspicuous. The anterior areas were fissured, especially near the foot, but less so behind, so that when I first examined this species, taking the extreme delicacy of the membranes into account, and the apparently imperforate character of the posterior areas, I suspected that the fissures were due to tearing or incautious probing. A reversal of the septum and an examination of other species showed, however, that there are variations in this respect, and that Pelseneer had correctly described the conditions which exist in some of them. An interesting feature disclosed by the examination of the septum under transmitted light was, that the blood-vessels which supply the branchial lamelle appear to reach them from behind, a separate vessel starting from the vicinity of the siphons and running a somewhat irregular course to each of the lamellar areas on each side. There seemed to be no contimation of these vessels anteriorly in front of the areas which they serve. The ovisacs are not lobulated, as in Myonera, but more evenly spread over the posterior surface of the visceral mass. The ripest eggs were large and eonspienous. There was no evidence of their extrusion throngh the eovering of the visceral mass, as in Myonera, though this may take place later.

Maximum altitude of shell, 11.5; maximum longitude, 10.5; diameter, 9^{mm}. This form has almost exactly the outline and size of P. sublevis Verrill, to which I at first referred it. But that speecies has the typical teeth of Poromya, while in this the only tooth in the right valve is a single slender spur-like cardinal, and the left, valve is almost edentulous. In its teeth this species agrees much more nearly with P. (Cetomya) tornata than with any of the normal species, and, like that, has a twist in the posterior rostrated part of the shell which I have not observed in any gennine Poromya, and which is not mentioned by Verrill in his deseription of P. sublevis, of which I have not had an opportmity of seeing specimens. I can hardly (after seeing many specimens of Poromya) believe that such differences in the hinge are not of specific value.

> Subgenus DERMATOMYA Dall.

Dermatomya Dall, Bull. Mus. Comp. Zö̈l., xvili, pp. 449, 452, June, 1889.
Dermatomya mactroides Dall.
Plate vili, Fig. 8.
Poromya (Dermatomya) mactroides Dall, Bull. Mns. Comp. Zoöl., xvini, p. 449, June, 1889.

Shell large, stout, strong, with a strong epidermis, olive gray toward the beaks, paler, inclining to greeuish, toward the margins in the adult; epidermis raised into wrinkles on the posterior area and folding in over the bisal margins; young shell with a few sparse granulations near the anterior and posterior margins, adult without visible granulations, the epidernis mostly shining and the shell showing iridescent through it; the young are subrhomboidal, the adults have the beaks prominent, high, subcentral; the anterior end rounded, the posterior very slightly produced; surface senlptured only with more or less evident incremental lines; lunule and escutcheon are risible on a close scrutiny, though not marginated by a line; the former is cordate, the latter narrow and long; hinge of Poromja, strong; ligament short, half internal; interior faintly iridescent, pallial and muscular sears distinct but not emphatic; the pallial line is deeply and rather narrowly sinnated; the basal margin is perfectly plain; altitude of adult shell, 16 ; longitnde, 18; diameter, 12^{mm}.

Hab.-U. S. Fish Commission Stations 2781, 2783, and 2785, on the west coast of Patagonia, on a muddy bottom in 122,348 , and 449 fathoms; bottom temperature $46^{\circ} .9$ to 490.9 F . Also at Station 2793 , in 741 fathoms, mud; bottom temperature 38°. 4 F . off the coast of Eenador.

The superficial resemblance to a small Mactra presented by this shell needs no further comment. It is sufficiently evident.

This fine species differs from the typical form of the genus in the absence of the superficial gramulations, and in the presence of a deep and strong pallial siuns, which characters indicate that it should form a special section of the group. The hinge is also remarkably coarse and strong.

In the type of Poromya the pallial sinus is obsolete; its retractor muscles are either mainly incorporated in the septum, the muscular contractions of which serre to move the siphons, or they are replaced by the septal muscles. In the present species, however, there is a large and strong pallial sinus with its usual museles, and the septum is consequently only very slightly furnished with muscular fibers, and does not serve to retract the siphons. The valve to the branchial siphon is large, and the palps are enormous. The anterior edges of the anterior palps are notched or papillose toward the median line, a condition not observed in the other species. The foot is pointed and slightly geniculate. There are seven anterior and eight or nine posterior gill lamellæ; the two areas are rather narrow, and their ends closely approach one another near the middle of the foot on each side. In front of the ridge which precedes the large branchial valve, and between it and the foot, are four or five quite prominent elevations of the surface, closely resembling the brauchial lamellæ, but with their length in the axial direction of the animal. There are no fissures between these, but they seem very like branchial lamellæ in process of development. Both the longitudinal branchial areas on each side are fissured, and their bloodvessels reach them from behind.

Suborder MYACEA.

Family CORBULIDA.

Genus CORBULA Bruguière.
 Corbula Dietziana C. B. Adams.

This species was obtained at the Abrolhos Islands, near Porto Allegre, Brazil. It extends northward to Cape Hatteras, and was previously known to extend sonthward only among the Antilles.

Corbula Barrattiana C. B. Adams.
Corbula disparilis Orbigny.
Corbula cymella Dall.
The above mentioned three species were collected at Station 2758, 90 miles southeast from Cape San Roque, in 20 fathoms, shelly bottom, off the Brazilian coast.

> Family SAXICAVID.E:
> Genus SAXICAVA F. de Bellevue.
> Saxicava arctica Linné.

This well known shell, indistingnishable from Greenland specimens, was collected at Stations 2768 and 2770 , off Cape Delgado and Spiring Bay, eastern Patagonia, in 43 and 58 fathoms, sand.

Class SCAPHOPODA.
 Order SOLENOCONCHIA.
 Genns DENTALIUM Liuné.
 Dentalium megathyris sp. nov.
 Plate ix, Fig. 1.

Shell remarkably stout and solid, molerately curved; surface, when not eroded, shining; color yellowish white, generally with some dark extraneons matter lodged in the grooves of the sculpture; anal end circular, small, simple, with a sharp edge, about $2^{m n n}$ in diameter; toward this end the shell is more curved than anteriorly; surface with strong flattened longitudinal threads about 1^{mm} from center to center, the interspaces sharply grooved in rather deep square-sided channels; about the middle of the shells the ribs begin to bifureate so that the anterior sculpture, though of the same character, is some two or three times as fine as the posterior; in old age the sculpture is interrupted around the aperture; transverse sculpture ouly of fine incremental lines; oral aperture sharp edged, a little oblique, nearly circular, slightly flattened in an antero-posterior sense; interior milk-white; texture of the shell porcellanous with an external chalky stratum under the smooth exterior, which is frequently much eroded even in life; maximum longitude of shell, 95 ; diameter of aperture, 17.5 ; antero-posterior diameter of same, 15.5^{mm}.

Hab.-U. S. Fish Commission Station 2807, near the Galapagos Islands, Pacific Ocean, in 812 fathoms, globigeriua ooze, bottom temperature $38^{\circ} .4 \mathrm{~F}$.; also off Chiloe Island and southwest Chili at Station 2788 and 2,789, in 1,050 and 1,342 fathoms; temperatures 360.9 and $35^{\circ} .9 \mathrm{~F}$.

This is one of the finest species of the genus known, and was taken alive in some numbers. Thè young recalls D. ceras Watson, but the shell changes in rate of increase and form of longitudinal ribs as it grows. It is a little straighter near the anal end, and the adult is more fumel shaped, with flatter ribs than in D. cerus.

The radula is short, with the formula $\frac{1}{1+1 \mid+1}$. The median tooth is wide, subrectangular, arehed a little in front. The laterals on each side have a projecting stout cusp; the uncini are flat rhomboidal plates. The whole radula bears a strong resemblance to that of Entalis striolata, as figured by G. O. Sars. (Moll. Reg. Arct. Norv., t. I, f. 1, 1a.-c.) The exophagus is short; the stomach short and corlate, stuffed with foraminifera. The soft parts, as preserved in alcohol, seem ridiculously small and ont of proportion to the massive shell.

```
D. callithrix Dall, Bull. Mns. Comp. Zoül., xvin., p. 427, Pl. xxvir., Fig. 10, June, 1889.
```

This species was collected at Station 2751, south of the island of St. Christopher or St. Kitts, in the West Indies, in 687 fathoms, ooze ; temperature at the bottom 390.9 F .; and at Station 2754 , east from the islaud of Tobago, in 850 fathoms, ooze; temperature 370.9 . It has also been found among the dredgings made at Rio Janeiro many years ago by the Wilkes Exploring Expedition.

Dentalium ensiculus Jeffreys.

D. ensiculus (Jeffreys, 1877) Dall, Bull. Mus. Comp. Zö̈l., xviir., p. 428, Pl. xxvir. Fig. 12, 1889.
D. didymum Watson, 1879.
D. sigsbeeamm Nall, 18-1.

Collected at Station 264t, off Cape Florida, in 193 fathoms, sand; temperature $43^{\circ} .4$.

This species is common to the north Atlantic, but so far has not been found south of the Antilles.

Dentalium ceras Watson.

Collected at U. S. Fish Commission Station 2763, in 671 fathoms, globigerina ooze, temperature $37^{\circ} .9,240$ miles east from Rio Janeiro. This locality helps to bridge the gap between the Pacific station west of Valparaiso, where the Challenger found it, and the stations in the Antilles and the Gulf of Mexico, where it was obtained by the Blake.

Dentalium candidum Jeffreys.

This species was found with the preceding and also at Station 2760 , 90 miles uorth from Ceara, Brazil, in 1,019 fathoms; temperature 390.4 F . It was obtained by Jeffreys in the northeast Atlantic, in 410 to 1,750 fathoms, and on the northeast coast of the United States, on the Carolina coast and northward, by the U. S. Fish Commission, in 843 to 1,309 fathoms. The present localities greatly extend its sonthward range.

This is the D. solidum of Verrill, and I have received it from a correspondent in Europe, under the name of 1.ergastricum Fischer, from deep water in the Bay of Biscay.

Dentalium perlongum Dall.

Collected at Station 2751, off St. Kitts, West Indies, in 687 fathoms, ooze, temperature 390.9 ; at Station 2754 , east from Tobago, in 880 fathoms, temperature 370.9 ; and at Station 2760,90 miles north of Ceara, Brazil, in 1,012 fathous, coral, temperature 390.4 F . It ranges northward to the Carolina coast.

Dentalium Gouldii Dall.
D. Gouldii Dall, Bull. Mus. Comp. Zö̈l. xvin, p. 424, Pl. xxvi, Fig 4, June, 1889.

This extends from South Carolina to the Antilles and southward to Station 2762, east from Rio Janeiro, in 59 fathoms, mud ; temperature 570.1 F.

Genus CADULUS Philippi.
Cadulus albicomatus sp. nov,
Plate 1x, Fig. 8.
Shell resembling C. spectabilis Verrill, but larger, with a less prominent equator, more compressed in an antero-posterior direction, and with the anal opening produced at the sides and ronndly excavated in front and behind instead of notched laterally and produced medianly. Color milk-white; ineremental sculpture indicated only by more or less translucent rings in the shell substance; longitudinally sculptured by extremely fine sharp grooves with equal interspaces which cover the whole of the shell; curvature moderate, nearly uniform, slightly more marked near the anal end ; the whole shell distinetly compressed thongh not flattened, except below the oval aperture, where the shell is impressed, making a shallow sulcus extending backward wearly two millimeters, and in front arching the margin so that the perfeet aperture is distinctly reniform with sharp thin edges. There is no swollen equatorial girdle; the greatest diameter is near the posterior end of the above-mentioned sulens, whence the shell tapers evenly backward; aperture slightly oblique; anal aperture neariy circular, concavely arched, but not notched in front and behind; longitude of shell on its dorsal chord, 24 ; perpendicular to the chord, 2 ; diameter of oval aperture, 3 ; autero-posterior diameter, $\mathbf{1 . 5}$; diameter of anal aperture, 1 ; maximum diameter of shell, 3.4 ; antero-posterior diameter of shell, 3^{nm}.

Hab.-U. S. Fish Commission Station 2792, in 401 fathoms, mud; off Manta, Ecuador; temperature 420.9 F.
This species was obtained about 40 miles south of the equator in west longitude 81°. It is one of the largest and finest species of the geuus, and the only one known to me which is distinctly longitudinally seulptured.

Cadulus quadridentatus Dall.

Found at Station 2765 in $10 \frac{1}{2}$ fathoms, sand, off Rio de la Plata. It extends northward to Cape Hatteras and has also been found at Feruando Noroñha and the west coast of Florida in 7 to 50 fathoms.

Cadulus tumidosus Jefirreys.
Dredged at Station 2760, 90 miles north from Ceara, Brazil, in 1,019 fathoms, broken coral, temperature 330.4 F . It has been dredged in deep water in several parts of the North Atlantic, the Bay of Biscay, and near the Canaries. The specimens have been compared with those in the Jeffreys collection.

Class GASTROPODA. Subclass ANISOPLEURA.

Superorder EUTHYNEURA.

Order OPISTHOBRANCHIATA.

Suborder TECTIBRANCHIATA.
Family ACTEONIDE.
Genns ACT $\nrightarrow O N$ Montfort.

Actæon delicatus Dall.
A. delicatus Dall, Bull. Mus. Comp. Zö̈l., xviis, p. 41, Pl. xvif, Fig. 5, 1839.

This Antillean species was obtained at Station 2771, off Point Gallegos, eastern Patagonia, in $50 \frac{1}{2}$ fathoms, sand, temperature 490.4. This discovery carries its known range southward nearly the whole length of the continent of South America.

Actæon curtulus sp. nov.
Shell small, short, subglobular, white, not polished; surface covered with sharp, deep, close set, spiral grooves, minutely punctate at bottom; whorls three, beside the prominent, polished, smooth, globular, sinistral nuclens; suture distinct, not channeled; outer lip thin, simple; body with a thin wash of callus; pillar short, thin, very much twisted, so that its onter edge presents a plait-like appearance. while the shell seems almost canaliculate, thengh the pillar is continnous with the basal margin; above the twisted edge and separated from it by a deep channel is a second less prominent plait; altitude of shell, 3 ; diameter, 2 man.

Hab.-West coast of Patagonia, at Station 2783, in 122 fathoms, mud, temperature $45^{\circ} \mathrm{F}$.

This little shell is mostly comprised in the last whorl and appears mature. It recalls Stilifer, or a small snow-white Pedipes, as much as anything, and is different from any recent species of the group I have seen.

Actæon perconicus sp. nov.

$$
\text { Plate xir, Fig. } 7 .
$$

Shell pear-shaped or conic, with rather acute spire, polished ivory white, with four whorls beside the nucleus; transverse scalpture of incremental lines; spiral sculpture of three to five close-set, sharp, punctate grooves in front of the sutnre, more distant anteriorly, and a similar but more numerons and uniformly spaced series just behind the
pillar, behind which again are four or five widely separated similar grooves, the posterior near the periphery; between them and near the periphery, as well as behind it, are no groores or but faint spiral obsolete stria; suture distinct but not channeled; last whorl much the largest; outer lip straight, simple, slightly thickened; body with a moderate deposit of callns; pillar as in A. curtulus, but less strongly twisted and with the plait and recurved margin subequal; although the margin is continuous, there is a rather deep sulcus behiml the anterior end of the pillar, corresponding to a groove, which bounds the columella callus; longitude of shell, 5 ; latitude, 3 ; longitude of aperture, 3^{mm}.

Hab.-Near the Galapagos lslands, in the Pacific, in 812 fathoms, ooze; temperature $33^{\circ} .4 \mathrm{~F}$.

This shell and the last species seem to stand in an intermediate position betweon Actron of the typical kind and Cimulia. If the onter lip, should erentually become much thickened, of which, howerer, there is no satisfactory evidence, these shells might be referred to Cimulia. If the A. curtulus recalls Pedipes mirabilis Muhlfeldt in its form and sculpture, A. perconicus recalls P. elongatus Dall.

Family TORNATINIDAE.
 Genus UTRICULUS Brown.

Utriculus domitus Dall.
Collected at Station 2751, soutl from St. Kitts, in 687 fathoms, ooze; temperature, $39^{\circ} .9 \mathrm{~F}$.

Family SCAPHANDRID.E.
Genus SCAPHANDER Montfort.
Scaphander nobilis Verrill.
Dredged at Station 2754 , east from Tobago, in 880 fathoms, ooze; temperature 350.9 F . It extends northward to Delaware Bay, in deep water.

Scaphander interruptus sp. nov.

Plate xif, Fig 12.

Shell in mans respects resembling S. lignarius and best described by comparison with it; shell of a livid or grayish straw-color, not the jellow or reddish brown of lignarius; the tip of the spire is smaller in proportion and more pointed; the axis is pervious as in lignarius, but the perforation is more eclindrical and does not become funnel-shaped as the shell enlarges to maturity; the shell arerages more slender; the callus on the body is mot reflected so far and especially on the anterior part of the pillar; the grooves of the surface in s . lignarius, withont
exception, are continnons, the punctures being arranged along their channels ; in S. interruptus the spiral senlptare is composed of rows of short or longer punctuations or grooves, which do not unite to form a continuous line except close to the columella in front, and here rather as the result of crowding and over-lapping; these short grooves are not puctate at bottom as in S. lignarins, but are apt to alternate stronger and weaker, and are more close-set than in lignarius of the same size ; maximum longitude of sheli, 33 ; maximum latitude of shell 17.5 ; of aperture, 13.5^{mm}.

Hab.-Station 2788, west coast of Patagonia, in 1,050 fathoms, mud, temperature 37°; and Station 2307, near the Galapagos Islands, in 812 fathoms, ooze, temperature $38^{\circ} .4 \mathrm{~F}$,
The specimens have been carefully compared with a rery large series of S. lignarius in the Jeffreys collection.

> Subgenus SABATIA Bellardi.
> Sabatia bathymophila Dall.
S. bathymophila Dall (1881), Bull. Mıs. Comp. Zö̈l. xvini, p. 53, Pl. xín, Figs. 9, 9b. 1889.
This species, which was previonsly known to extend in deep water as far north as Fernandina, Florida, was obtained at Station 2744, 100 miles east from Delaware Bay, in $55 \pm$ fathoms, mud; and at Station 2754, east from Tobago, in 880 fathoms, ooze; temperatures $38^{\circ} .9$ and 370.9 F .

Genus CYLICHNA Lovén.
 Cylichna Verrillii Dall.

This species was also obtained at Station 2754.
Genus ATYS Montfort.
Atys Sandersoni Dall.
A ? Sandersoni Dall (1881), op, cit. xviil, p. 54, Pl. xvil, Fig 7.
This species was collected at Station 2758,90 miles sontheast from Cape San Roque, in 20 fathoms, shelly bottom, temperature $79^{\circ} .1 \mathrm{~F}$.

Family BULLIDA.
Genus BULLA Linne.
Bulla Krebsii Dall.
B. Krebsii Dall, op. cit., xvinf, p. 56, 1889.

This species described from Guadalupe, West Indies, was collected at Station $275 \pm$, east from Tobago, in 880 fathoms, ooze; temperature 370.9 F .

Order PULMONATA.
Suborder BASOMMATOPHORA. Superfamily PETROPHILAA. Family SIPHONARIIDA. Genns SIPHONARIA Sowerby. Siphonaria ferruginea Reeve.

This species, which reaches as fir morth as Vera Cmz, Mexico, was obtained at the Abrolhos Islands, oft Porto Allegre, Brazil.

Suborder STYLOMMATOPHORA
Superfanily CibOPIILLA.
Family IELICII.E.

Genns HELIX Linné.
Helix lactea Mïller.
This well known South European species, being an article of diet with the Italians, has been introdnced into those parts of South America where Italian emigration las been directed. At Montevideo it was collected in great abundance, not differing from Mediterranean specimens, except that the shells averaged somewhat darker in color, on the upper portion, than the European specimens with which I was able to compare them.

Superorder STREPTONEURA.

Order CTENOBRANCHIATA.
Suborder ORTHODONTA.
Superfamily roxogionas
Family TEREBRID.E.
Genus TEREBRA Lamarck.
Section ACES 11. \& A. Adams.
Terebra (Acus) benthalis Dall, var. nodata Dall.
Plate v, Fig. 9.
Shell small, slender, polished, yellowish white, with a blunt, somewhat inflated nueleus, and thirteen (or more) somewhat flattened whorls; suture distinct, appressed, the presutural band narrow, bounded in front by a rather wide, shallow sulcus and ornamented by obscure rounded pustules, from ten to fifteen on each whorl; immediately in front of the
sulens is a row of larger and more prominent nodulations, the number on each whorl being the same as on the band; there are also a few transverse, sometimes sharp but generally obscure, ridges crossing the whorls; spiral sculpture of fine obscure lines, often obsolete, but pretty evenly distributed orer the surface; aperture (broken) narrow, outer lip simple; pillar simple, without any marginal keel ; canal uarrow, not exhibiting any fasciole; base attenuated in front, gently romuded to the periphery. Maximum longitude of shell, 18.5 ; maximum latitude, 4^{mm}.

Hab.-U. S. Fish Commission Station 2750, off St. Bartholomew; West Indies, in 496 fathoms, fine gray sand; bottom temperature $44^{\circ} .4 \mathrm{~F}$.

The first three apical turns of this shell are smooth, then the sculpture above described begins. The soft parts were uot obtained. It resembles the shell described in the Blake Report under the name of benthatis and is doubtless a variety of it, in which the longitudinal seulpture has become faint aud the nodulations inteusified.

> Family CONID.E.

Genus CONUS Linné.
Conis Cleryi Reeve.
This species was collected at Station 2762, east from Rio Janeiro, in 59 fathoms, living; and at Station 2765, off the Rio de la Plata, in latitude $36^{\circ} 43^{\prime}$, in $10 \frac{1}{2}$ fathoms, sand; temperature $590^{\circ} .1 \mathrm{~F}$.

The examination of these specimens leads me to believe that my suggestion in the Blake Report that C. Tillepinii, F. \& B., might be ideutical with C. Cleryi, is not likely to prove correct. They seem much more distinet than the figures of the species would indicate.

> Family PLEUROTUMIDA.

Genus PLEUROTOMA Lamarck.
Subgenus LEUCOSTRINX Dall.
こeucosyrinx Goodei sp. nov.

Plate vi, Fig 1.

Shell large, thin, white, with a tinge of pale orange in the throat and on the pillar; whorls eight (or more), nuclens wanting in the specimens; surface generally slightly eroded, glistening when perfect; spiral seulpture below the periphery of narrow shallow grooves separating wider, half obsolete threads; at the periphery is an obtuse carina which is sharper on the early whorls; behind this is a wide shallow sulens, behind which the whorl rounds to the distinct but unchannelled suture; on the upper or posterior part of the whorl the fine spirals are perceptible but fainter than in front of the periphery; transverse sculpture only of ineremental lines; aperture elongated moderately wide; anal
notch wide, rounded ; faseiole slightly raised, not strongly differentiated ; body with a thin transparent glaze; pillar strong, obliquely trmeate, flaring, almost pervions, anteriorly more or less tinged with pale orange; canal long, thin, shallow, slightly recurved; onter lip, prominent below the periphery, thin, sharp; maximum longitude of shell, so; maximum latitude, 355^{mm}.

Operculum at first shaped like that of Folutopsis, the muelens apical but the succeeding growth showiug a tendency to a slight spirality; with subsequent growth this becomes inclosed by additions made all around the margin, and the adult operculum appears buccinoid, having a buccinoid outline, in the lower right hand part of which the nuclear part is inclosed. This singular form of operculum is not a deformity, but is common to several of the species of Lencosyrin. in which $\overline{1}$ have been able to examine this appendage. It is a feature which by gradual stages, represented by different species, approaches the normal Plenrotomoid operculum.

Hab.-U. S. Fish Commission Station 2788, in 1,050 fathoms, green mud, off the northwest coast of Patagonia, south latitude $45^{\circ} 3 \tilde{5}^{\prime}$, west longitude $75^{\circ} 55^{\prime}$, 3 degrees south of Chiloe Island; bottom temperature $36^{\circ} .9 \mathrm{~F}$.
This fine species recalls, in its general form and appearance, the inoperculate Mangilia (Aforia) circinata Dall, from Bering Strait and the Arctic Ocean. The soft parts were destrosed by desiccation before reaching me.

Leucosyrinx (Goodei var.?) persimilis sp. nov.

$$
\text { Plate vi, Fig. } 3 .
$$

Shell resembling the preceding species except in the following particulars: It is more slender and of pure white, the peripheral cariua is more auterior, the aual noteh consequently wider, and the fasciole is not elevated; the peripheral carina is narrower and more distinet, but the sulens behind it is much fainter; the pillar is thinner and so coiled as to be axially pervions to the very apex; the canal is not quite so shallow, and there is no color on the pillar or in the throat ; the spiral sculpture is finer and more distinct. Maximnm longitude of shell, 80 ; maximum latitude, 30^{mm}.

Operculum slightly more elongate, but in structure like that of the preceding species.

Hab.-U. S. Fish Commission Station 2791, latitude $38^{\circ} 8^{\prime}$ S., longitude $75^{\circ} 53^{\prime} \mathrm{W}^{\top}$., off the sonthwest coast of Chili, in 677 fathoms, mud; bottom temperature 370.9 F .; and Station 2793, in 741 fathoms, off the coast of Ecuador, in inorth latitude 1003^{\prime}, west longitude $80^{\circ} 15^{\prime}$; bottom temperature 380.4 F .
-This species is remarkably like the L. Goodei, but in a fair series the differences seem constant enongh to leserve a name. The soft parts are whitish; the tentaeles stout and blant ; there are no peses or pedi-
cels; the foot is wide aud double edged in front, rounded behind; there is a well-marked purpuriferous gland on the dome of the mantle; the penis is very large and of the usual form, with the terminal papilla retractile; the gills prominent and normal as well as the osphradium.

Leucosyrinx tenoceras Dall.

L. tenoceras Dall, Bull. Mus. Comp. Zoöl., xvirı, p. 76. Pl. xxxvi, Fig. 5, June, 1889.

This species, which extends northward to Cape Fear, North Carolina, was collected by the Albatross, at Station 2751, sonth of St. Kitts, in 687 fathoms, ooze; at Station 2754, east from Tobago, in 880 fathoms, ooze; and at Station 2763,240 miles east by south from Rio Janeiro, in 671 fathoms, ooze; temperatures 370.9 to 390.9 F .

Leucosyrinx Verrillii Dall.

L. Terrillii Dall (1881), op. cit., xviri, p. 75, Pl. x, Fig. 5, 1889.

This fine species, which has the same northward range as the preceding, was found with it at Station 2751, and also at Station 2761, 150 miles sonth from Bahia, Brazil, in 818 fathoms, ooze; temperature 380.9 F .

Subgenus PLEUROTOMA s. s.
Pleurotoma exulans sp. nov.

Plate r, Fig 7.

Shell solid, of a yellowish chocolate brown, strongly sculptured, with eight or nine whorls, the tip eroded in all the specimens; whorls rounded, the region of the fasciole in front of the closely appressed suture flattish, constricted, and polished; transverse sculpture in front of the fasciole (on the penultimate whorl) of about fourteen short, stont, obliquely set riblets, which coronate the whorl and do not reach the suture in front; spiral sculpture of rather narrow shallow grooves, separating slightly-raised flattish, rather wider, threads; the last are finest on the fasciole and somewhat coarser near the canal, but tolerably miform over the entire surface; notch rather wide, not very deep, rounded, and half way between the suture and the posterior ends of the peripheral riblets; outer lip thin, simple, produced in the middle; canal rather well defined, not very long; pillar obliquely trimmed off in frout, of a creamy brown, with a thin polished glaze; axis not pervions; canal rather deep, flaring a little anteriorly. Maximum longitude of shell, 32 ; maximm latitude, 13^{mmm}.

Operculum elongate pyriform, thin, straight, with an apical mucleus, somerhat concave.

Hab.-U. S. Fish Commission Station 2808, near the Galapagos Islands, in the Pacific Ocean, in 634 fathoms, coarse sand; bottom temperature 390.9 F .

This fine species borders on the subgenus Leucosyrinx, but has the opereulum, solid habit, aud strong seulpture of Pleurotoma as restricted.

Subgenus GENOTA H. \& A. Adams.

Scetion DOLICHOTOMA Bellardi.

Genota Carpenteriana (Gabb).
Pleurotoma (Surcula) Carpenteriana Gabl., Proc. C'al. Acad. Sci., 111, p. 183, 1865.
Hab.-Monterey, Gabb. Santa Barbara Islands, Cooper; U. S. Fish Commission Station 2838, in 44 fathoms, mud, off Cerros Island, Lower California.

This interesting species, of which but few specimens are known, belongs to the section Dolichotoma, of which the type is the fossil Plenrotoma cataphracta of Brocchi. This form has a rather thick, stout, blackish operculnm, recalling that of Comus, but of which the apical point is frequently broken or worn away. The scar on the inner side of the operculum is concentric and strong, but covers only the wider part of the appendage. This section of the Pleurotomider is frequently furnished with obscure thickened ridges on the pillar; they can be found in most specimens by cutting into the apical whorls even if the shell has no indication of ridges at the aperture.

The foot of this species is narrow, domble edged, and truneate in front, not anriculate, moderately pointed behind; the sides of the foot and sirface of the body are irregularly dotted with small, and larger, round pustular elevations. The amimal has a purpuriferons gland, and in the case before me, in dying, the fluid expelled from this gland appears to have dyed the whole body of the animal deep purple, which, under the action of the alcohol and time, has become largely brownish. The tentacles are wide and small, with a small, well detined eye on the outer angle. The verge is sanall, suberlindrical, except near the tip, which is (naturally or otherwise) somewhat flattened, clavate, and decidedly phalliform, terminating in a large subconic smooth papilla with a thickened girdle at its base. The gills and osphradium as usual. The proboseis is short, much attenuated anteriorly. There is a large poison gland situated as in Bela, and the individual teeth are much like those of Bela ; for instance, those of B. Gouldii as figured by Verrill (Trans. Conn. Acad., v, Pl. Lvir, Fig. 6a), but with the base of insertion less deeply notched than in that species, and with a slight angulation, not a darb, near the point.

> Genus DRILLIA Gray.
> Drillia Harfordiana Reeve.

This species, which reaches at least as far north as Vera Cruz, Mexico, was collected at the Abrolhos Islands, near Porto Allegre, Brazil.
D. pagodula Dall, op. cit., XVint, p. 90, Pl. xirl, Fig. 6, 1889.

This species was also collected at the Abrolhos Islands. It is common to the Antilles and the Gulf of Mexico, and has been tound on the west coast of Florida, in $\overline{50}$ fathoms.

> Genus MANGILIA (Risso) Fischer.
> Sulgenus MANGILIA Risso.
> Mangilia antonia Dall.

Piate V, Fig. 11.
Mangilia antonia Dall, Bull. Mus. Comp. Zö̈l., ix, p. 59, August, 1881 ; Xviri, p.116, Pl. x, Fig. 4, Pl. xi, Fig. 11, 1889.
Hab - Gulf of Mexico to the Antilles, in deep water. Station 2751, south of St. Kitts, in 687 fathoms, ooze; and Station 2754, east of Tobago, in north latitude $11^{\circ} 40^{\prime}$, west lougitude $58^{\circ} 33^{\prime}$, in S80 fathoms, ooze; temperatures 38° to $40^{\circ} \mathrm{F}$.

The figures of this speeies heretofore given having all been marle from young and immature specimens, it was thought well to figure the complete adult shell from some fine specimens collected near St. Kitts.

The specimen figured measures 18^{mm} in length; the largest (but not perfect) specimen obtained must liave reached a length of 23 mm .

Mangilia exsculpta Watson.
M. exsculpta (Watson, 1882) Dall, op. cit., xviil, p. 117, Pi. xı, Fig. 9, 1889.

Antilles, Challenger and Blake, collected by the Albatross at Station 2750, off St. Bartholomew, West Indies, in 496 fathoms, sauld ; Station 2751, south of St. Kitts, in 687 fathoms, ooze; and Station 2754, east from Tobago, in 880 fathoms, ooze; temperatures 370.9 to $44^{\circ} .4 \mathrm{~F}$.

This is a very peculiar looking shell. The specimen figured in the Blake report is only a young specimen. Those obtained by the Albatross were much larger and finer.

Subgenus CALLIOTECTUM Dall.

Shell with a vernicose epidermis, short, modifferentiated canal and no anal notch or fasciole; operculum with apical muclens, increasing like that of Fusus, but eurved instead of straight, though not coiled ; animal blind, with a short sae like proboseis, with no teeth or poisou glantl. Type C. vernicosum Dall, abyssal.

Calliotectum vernicosum, sp. nov.

$$
\text { Plate v, Fig. } 8 .
$$

Shell slender, finsiform, covered with a brilliant chestnut-brown, closely adherent epidermis; whorls seven, without the nuclens, the tip more or
less eioded in all the specimens, thongh living when taken; whorls slightly rounded, not inflated; sculpture chiefly of fine, subequal, flattened, narrow, slightly tlexnons transverse plaits, which on the earlier whorls reach forward to the suture, but on the later ones become obsolete near the periphery, and tend to disappear altogether near the aperture on the last whorl of the adult shell; these plaits are separated by narrower, rather deep grooves, and end at the suture behind rather blustly, thongh they can hardly be said to coronate it; there are thirtyfive or forty of the plaits on the penultimate whorl; suture very distinct, slightly channeled, but not deep; there is no anal fasciole; the aperture is shaped like a melon seed, the outer lip ereuly arched, projecting somewhat in frout of the periphery, not thickened or reflected, and with no constriction for a canal ; body and pillar withont callus; the columella straight, very slender, not recurved; siphonal notch extremely shallow, hardly differentiated from the aperture; interior of the aperture polished, smooth, dark brown, the pillar livid white or flesh color; siphonal fasciole, none; lines of growth not prominent, the surface showing obscure faint spiral strie or scratches, but no spiral sculpture. Maximum longitude of shell, 48; maximum latitude, 19^{mm}.

Hab.-Station 2793, off the coast of Ecnador, in 741 fathoms, mud, and Station 2807, near the Galapagos Islands, in the Pacific, in 812 fathoms, coral mud; temperatures in both cases 350.4 F .

The tirst inentioned specimen was collected with Leucosyrinx persim. ilis and Pleurotomella cingulata.

There is between the internal aragonitic layer and the epidermis a rather thick layer of a cretaceous nature easily eroded, and the action of solvents upon this even in living specimens is extremely marked. The operculum is thin, yellowish brown, with strong growth lines and a large surface of attachment. It reaches a length of 10^{mm} and a breadth of 6^{mm}. It is shaped like that of Fusus, but more curved, and raries somewhat in form in different specimens. The nuclens is apical.

The soft parts are mostly yellowish white. There is a purpuriferons gland alongside the distal part of the intestine which ejects a dark rose-colored dye. The head is wide, the tentacles broad, flattened, and comnate at the median sinus. The gills, osphradium, and siphon are as usual. The foot is wide, rounded-acute behind, domble-edged and slightly auriculate in front. The proboscis is small and short, with large salivary glands whose axis carries a greenish streak. There is no poison glaud or dental sac. The animal appears to be edentulous. The verge is large, stont, a little flattened, with its tip obliquely truncate, leaving a granulous oval area at the upper extreme of which is a small conical papilla. The anal orifice is not prominent. The surface exudes an abundant sticky mucus.

This rery beantiful aud remarkable shell is Pleurotomoid in its characters, though it wants the anal notch and fasciole. Although the operculum is arcuate it is not coiled upon itself. The figure, though accuProc. N. M. 89——20
rate as far as the form is concerned, gives very little idea of the beauty of the brilliant brown epidermis and sharply incised sculpture.

Subgenus PLEUROTOMELLA Verrill.
Pleurotomella cingulata sp. nov.
Plate vi, Fig. 2.
Shell large, fusiform, of a rich reddish brown, deepest on the pillar, with a closely adherent, very thin, polished epidermis; whorls seven, without the nucleus, which is lost in the specimen, while the outer coat of the apical whorls is much eroded; whorls full and rounded, suture distinct, not appressed or chammeled; transverse sculpture only of fine inconspicuons lines of growth; spiral sculpture of two sorts: first, a fine, sharp, slightly irregular striation, which covers the whole surface; secondly, of revolviug elevated cinguli, of which three on the periphery are more widely and deeply separated and more elevated than the others; these three have interspaces equal to or wider than themselves; on the last whorl in front of the periphery the cinguli are flat-topped little elevated wide bands with narrower interspaces, this sculpture becoming obscure toward the canal; above the periphery is one well-marked cingulum slightly turreting the whorl which iuclines from it to the suture in a flattened manner; aperture pointed in front, wider behind ; pillar simple, perfectly straight, anteriorly attenuated; body and pillar with a thin dark brown glaze; outer lip rery thin, sharp, crenulated by the ontside sculpture, which also grooves the interior ; notch shallow, wide ; fasciole hardly risible; canal short, wide, hardly differentiated, straight. Altitude of shell 73 ; maximum diameter 30 mm .

Hab.-U. S. Fish Commission Station 2793, off the coast of Ecuador, in 741 fathoms, mud; bottom temperature $38^{\circ} .4 \mathrm{~F}$.

The soft parts of this species were preserved, but had been so hardened that the shell was nearly ruined in the effort to extract them. The surface is rather rugose, of a rusty brownish color; the foot is narrow, double-edged, and slightly auriculate in front, rather pointed behind. The tentacles are very short and stout, with no traces of eyes or peduncles.

The proboscis and all its appendages are absent, probably, being ex. tended at the moment of capture, they were torn out by the edge of the dredge. The gill aud osphradium are as usual.

I may mention here that in this, as well as nearly all the other cases of abyssal shells with well marked coloration, the specimen, though kept in the dark, has faded rapidly. It is now mostly of a pale choc-olate-and-milk color, except at the points where it touches the bottom of the paper tray in which it is kept, or on the columella under the glaze.

Pleurotomella argeta sp. nov.
Plate II, Fig. 5.
Shell polished, short-fusiform, snow white, eight-whorled; nucleus eroded in the specimen; whorls full, appressed in front of the suture, elsewhere gently rounded; transverse sculpture of delicate incremental lines; spiral sculpture of obscure almost microscopic striæ and a few close set extremely fine threads on the canal; aperture elongated; anal notch very slallow, rounded; leaving only a faint slightly flattened fasciole; outer lip sharp, simple, arched well forward, especially anteriorly; body without callus; pillar thiu, white, short, slightly twisted; canal short, very wide, hardly differentiated; maximum longitude of shell 43 ; maximum latitude 20^{mmm}.

Hab.-U. S. Fish Commission Station 2807, in 812 fathoms, mud, near the Galapagos Islands; bottom temperature 38.4 F .

The characters of this species are as simple as possible, set a more elegant and delicate shell cau hardly be imagined.
The soft parts are yellowish brown and agree externally in all respects with those of the preceding species. Like that, it was impossible to extract them without wholly destroying the shell, as they had been placed in alcohol so strong as to make them as hard and tough as soleleather. In most Pleurotomide there is very little if any muzzle between the tentacles; at least when the proboscis is wholly retracted the inner bases of the tentacles, somewhat vertically flattened, are connate at a shallow sinus in the middle line. In the present and the preceding species, however, the tentacles are widely separated aud cylindrical, and there is a muzzle which is longer than the tentacles, when both are contracted in alcohol, into the ceuter of which the proboscis is retracted and which has a flattish end almost as in Litorina. Something of the sort is found in Conus if the figures are to be believed. More investigation in regard to this character is required.

Pleurotomella (Gymnobela) agonia sp. nov.

Plate vi, Fig. 4.

Shell small, thin, bright yellow-brown, with six full and rounded whorls, the nucleus lost, but without doubt of the Sinusigera type; spiral sculpture in front of the fasciole of numerous sharp elevated threads with wider interspaces, between each pair of which, except on the canal, are one or two smaller intercalary threats; on the fasciole there are only a few comparatively faint threads, which do not rise above the transverse sculpture, while on the body the spiral sculpture is predominant though minutely undulated by the other ; the transverse sculpture is composed of mumerons fine, ronnded, somewhat elevated threads with wider interspaces, forming a series of elegant concavely arched ripples on the anal fasciole, beyoud which they become fainter,
closer, and obscure, being over-ridden by the spirals which they minutely undulate; the fasciole is slightly impressed and extends to the suture, which is distinct but not channeled; the notch is shallow and gently rounded; the outer lip arched forward, sharp; the body covered with a thin glaze, in the aperture; the pillar thin, twisted, not persious ; canal short, distinct ; maximum longitude of specimen 16 ; maximum latitude 8^{mm}.

Hab.-Stations 2807 and 2803, near the Galapagos Islands, in the Pacific, in latitude $0^{\circ} 24^{\prime}$ south and longitude $89^{\circ} 6^{\prime}$ west, in 812 and 634 fathoms, globigerina ooze and coral sand ; bottom temperature $38^{\circ} .4$ to $39^{\circ} .9 \mathrm{~F}$.

This pretty little species is much like P. engonia Verrill, from deep water off the New England coast, but differs from it in having a finer and more elegant sculpture, rounder whorls, withont the prominent angle on the shoulder of P. engonia, a narrower fasciole inclined to the suture at a greater angle, and a narrower and more differentiated canal. In P. engonia the ripples on the fasciole are strongest near the suture and are not very regular, while in the present form their regularity is conspicuous and they extend without weakening entirely across the fasciole.

Pleurotomella Agassizii Verrill, var. permagna.

Hab.-Station 2734, 124 miles sontheast of Delaware Bay, alive, in 841 fathoms, soft mud, temperature $38^{\circ} .5$; and Station 2754, east of Tobago, in 880 fathoms, ooze, north latitude $11^{\circ} 40^{\prime}$ and west longitude $58 \circ 33^{\prime}$; temperature $37^{\circ} 0.9 \mathrm{~F}$.

This fine form resembles Pleurotomella Agassizii in general characters, and even in the rosy brown tint of the columella, but in a specimen of each, with the same number of whorls, we find P. Agassizii has a length of 28 and a maximum breadth of 12.5^{mm}, while the variety permagna has a length of 35 and a breadth of 17.5^{mm}. Some specimens of P. permagna reach a length of 47 and a breadth of 22^{mm}. Thee number of transverse riblets on the last whorl varies in both species; in P. permagna there are eighteen to thirty. I hase not seen any of the typical P. Agassizii with more than twents ribs.
P. permagna differs from P. Bairdii in just the characters, except size, that P. Agassizii does, and from P. Agassizii it is distinguished only by its mneh greater size. The two may be distinct species or they may be twn races of one species. Knowing the great variability of abyssal shells, I prefer to take the latter view for the present.

Pleurotomella suffusa sp. nov.

$$
\text { Plate xII, Fig. } 10 .
$$

Shell small, slender, fusiform, the pillar suffused with yellowish pink, the exterior white, with a thin, pale epidermis and seren or eight whorls, without counting the nucleus; specimen somewhat eroded on the upper
whorls, with indicatious of a shoulder or carina on the three whorls following the nucleus; suture slightly irregular, appressed, distinct, not channeled; spiral sculpture of fine threads, alternately larger and smaller, pretty uniform over the whole surface, with narrower interspaces, this sculpture fainter on the sutural side of the fasciole; transverse sculpture of faint, irregular, sbarp edged plications, strongest near the suture and on the obscure angle just in front of the fasciole, elsewhere nearly obsolete; fasciole very slightly impressed; notch very shallow ; aperture long, narrow, pointed behind ; outer lip sharp, arched forward; canal distinct, wide; pillar rosy, attennated in front; axis almost pervions; body with a thin glaze over a slightly excavated space; nucleus lost; soft parts of the subgenus; maximum longitude of shell, 31.5 ; maximum latitude, 11.5^{mm}.

Hab.-Station 2807, near the Galapagos Islands, Pacific Ocean, in 812 fathoms, mud; temperature $38^{\circ} .4 \mathrm{~F}$.

This species, though more slender and much more finely striated, recalls the slender varieties of P. Agassizii, though altogether destitute of the strong ribbing and sutural plications. None of the P. Agassizii have quite such a taper spire, yet in a general way the two forms belong to the same section of the group. Only one living specimen of the P. suffusa was obtained.
G. gratula Dall (1881), op. cit., xviiI, p. 110, Pl. xii, Fig. 10. Pleurotoma (Drillia) incilis Watson.

Collected by the Albatross at Station 2750, off St. Bartholomew, West Indies, in 496 fathoms, sand; temperature $44^{\circ} .4 \mathrm{~F}$.

Genus BORSONIA Bellardi.
Subgenus CORDIERIA Rouault.
A finely spirally striate, white Cordieria, with two plaits, an undulated anterior border to the anal fasciole, the canal long and slender, with a constriction in front of the short body whorl, was collected with the preceding. The last whorl measured 17.5 by 5.5^{mm}. The spire was entirely deficient, so that it can not be described, though the occurrence of the species is worth noting.

> Superfamily RHACHIGLOSSA.

Family OLIVIDE.
Genus OLIVELLA Swaiuson. Olivella floralia Duclos.

Collected at Station 2758, 90 miles sontheast from Cape San Roque, Brazil, in 20 fathoms.

Olivella jaspidea Gmelin.

Collected at Statious 2764, 2765, and 2766, the southermmost being off the Rio de la Plata and the depths 10 to 12 fathoms.

Olivella bullula Reeve.

Collected at Stations 2754, 2756, and 2768, the southernmost being off Cape Delgado, eastern Patagonia, and the depths varying from 43 to 880 fathoms. The specimen from shallow water was dead.

Genus ANCILLARIA Lamarck.
Ancillaria Tankervillei Swainson.
Young and dead specimens of this species were collected at Stations 2762 and 2764 , in $11 \frac{1}{2}$ to 52 fathoms, off the coast of Brazil and the Rio de la Plata.

Family MARGINELLID®.

Genus MARGINELLA Lamarek.
Marginella cineracea Dall.
Plate xi, Fig. 6.
M. cineracea Dall, Bull. U. S. Nat. Mus., No. 37, p. 106, No. 298, Pl. 42, Fig. 6, 1889.

Shell thin, opaque, ashy (when living perhaps translucent whitish), oval, smooth, four whorled; spire low, dome-like, not glazed over with callus; suture distinct, not channeled, slightly appressed: surface swooth, marked only by faint incremental lines; body whorl at the aperture thinly glazed but not callons; plaits oblique, distinct, three in number, the posterior weakest, the anterior continuous with the onter lip as it curves arond the canal; siphonal fasciole, noue; outer lip thin, very slightly reflected at its outer edge and scarcely thickened within, not denticulate; the outer margin of the lip is arched forward and outward; aperture wide, with a shallow anterior sinus and a narrow posterior commissure ; maximum longitude of shell 14; maximum latitude 8^{nam}.

Hab.-U. S. Fish Commission Station 2678, in 731 fathoms, ooze, off Cape Fear, North Carolina; bottom temperature 380.7 F.

This is a remarkably thin, simple, yet elegantly formed species. It is notable, among other things, for having but three plaits, for its absence of callus, and for its perfectly smooth outer lip. I do not recall any species of its own size with which it should be compared. There is a much smaller and probably unnamed species, dredged in deep water in the latitude of Fernandina, Florida, which has a very similar form. The thinness of the shell recalls M. fauna Sowerby and Folvarina pallida.

All the specimens obtained are of a sellowish ash color, but it is pos. sible that when alive ther were more translucent, if not whiter.

> Marginella avena Valencieunes.

This species was collected at the Abrollos Islands, ou the Brazilian coast, near Porto Allegre.

> Marginella succinea Conrad.
> Marginella lactea Kiener.
> Persicula catenata Montagu.

The three species above enumerated were obtained at Station 2755 , 90 miles southeast from Cape San Roque, Brazil, 419 miles south of the equator, in 20 fathoms, shelly bottom.

Family VOLUTID Æ.

Genus SCAPHELLA Swainson.
Scaphella magellanica Sowerby.

$$
\text { Plate Ix, Figs. 5, } 6 .
$$

Scaphella magellanica Dall, Bull. Mus. Comp. Zö̈l., Xviri, p. 452, June, 1889.
Voluta magellanica Sowerby, Thes. Conch., I, 204, Pl. 54, f. 99, 1847; not of Chemuitz, Conch. Cab. x, p. 139, 1788.
Hab.-Straits of Magellan and the easteru coasts of South America north of the Straits to latitude $36^{\circ} 42^{\prime}$ somth; off the Rio de la Plata, in from 10 to 80 fathoms; temperature $4 \geq 0$ to 500 F .

In discussing the peculiar nuclens of the shell of Scaphella about a year ago, I suggested that the form of the apex indicated the presence in the young larra of a membranons, or at least partly membranous, protoconch to which the normal shell was added aud which, after the formation of the normal shell, decayed or was lost. I suggested that the small sharp point characteristic of the tip, in certain recent and fossil species of Seaphellu was probably formed by the deposition of the first shelly matter along the line of the pillar of the membrauous larval shell. It was therefore with a great deal of interest that I foumd in the Albatross collection, containing the larval soung, several ovicapsules of scaphella magellanica from the coast of Patagonia.

These ovicapsules are circular, about an inch (2ssmm in diameter, with a flat base attached to dead Pectens; the upper part consists of a rounded dome, about 12 mm high, rather more lenticnlar than hemispherical, but varying somewhat in different specimens. It is externally exactly like the oricapsule of Volutopsis from Alaska, and, like that, contains two to four surviring larval shells. These remain in the capsule until they hare three or four shell! whorls. The apical point is acutely conical, slightly twisted, and in the youngest specimens (two-whorled) still retains some shreds of the extremely fragile mem-
branous protocouch adhering to the first whorl. As suggested by me from a study of the nuclei of Aurinia, the pillar of the protoconch and the apical spur of the larval shell coincile. The shape of the protoconch could not be ascertained, but its aperture was probably oval, from its traces left on the shelly surface. The apex is at first very sharp, but it loses substance eveu in the ovicapsule, and three-whorled specimens had it quite blunted, while shells escaped from the capsule show manally a mammillary tip at all stages. The largest larva obtamed, though it had just hegun to make part of the shell showing color pattern, was still without cephalic tentacles, eyes, or siphonal appendages. It had no trace of an operculum or epipodium. The shell showed two plaits on the columella. The confirmation of the existence of the suspected protocouch is particularly gratifying. The larval characters emphasize the differences between Toluta 1 roper and Scaphella, and leave no donbt of the propriety of their generic separation. The turbinate, shelly, peculianly sculptured larral shell of Voluta is entirely different trom anything we find in Scaphella.

The ovicapsules containing young larvie were dredged from a depth of about 80 fathoms. The larval shell figured had attained a length of 11^{nmm}.

This species, described by Sowerbs, is not the Voluta magellanica, ete., of Chemnitz, a non binomial anthor. Chemnitz states in his synonymy that his shell is the Voluta ancilla of Solander, in the Catalogne of the Portland Collection ; and that he is right is contirmed by his excellent figure, which agree perfecily with Sowerby's figure of V. ancilla. Sowerby does not refer to Chemnitz, who, not adopting the Limnean nomenclature, was in no case entitled to priorits. The S. magellanica is much like the S. ancilla, from which it is chiefly distinguished by its smaller size, more slender form, and usually fewer plaits.

Scaphella? brasiliana Solander.
Plate Ix, Fig. 2.
The most extraordinary oricapsule in the Albatross collection also belongs to the Volutide, and after careful study I am disposed to refer it to the species generally known as Scaphella brasiliana Solander.
This ovicapsule is oblate-spheroidal in shape, a riew from above gising a perfectly circular outline, while from the side the profile is a symmetrical oval. It is yellowinh in color but nearly transparent, thin, with a smooth, polished surface like that of wet gelatine, and possesses considerable rigidity. It is sufficiently rigid to retain its form perfectly under cousiderable pressure, and would probably crnsh rather than bend to a force too great to be resisted. It was filled with a fluid, probably not very different from sea-water, and contained a single bubble of air, which, by its lightness remaining in the dome of the capsule, just about counterbalanced the weight; so that, without rising to the surface, the capsule would float in the sea at a moderate depth. This
novel craft was freighted with the larval shells of some form belonging to the Volutidee, bat in which the calcification appears to proceed equally and simultaneously from the peristome of the protoconch, so that the apex, while indicating that a protoconch had existed, did not present a raised point due to calcification aloug the columella of that protoconch, as in Scaphella mugellanica. From careful comparisons, I find the only known species belonging to the region where this ovicapsule was obtained which is not excluded by the character of its nucleus from identification with the larver contained therein, is S. brasiliana, which has two plaits; and I have little doubt that to that species it should be referred. A bout twenty-five larval shells were contained in it, each showing two plaits.

This remarkable ovicapsule measures about 55^{mm} in horizontal diameter and 50^{mm} in rertical height. It was collected at U. S. Fish Commission Station 2766, in $10 \frac{1}{2}$ fathoms, sand, off the Rio de la Plata, in south latitude $36^{\circ} 47^{\prime}$ and west longitude $56^{\circ} 23^{\prime}$. Its specific gravity is almost equal to that of the alcohol in which it is preserved, and consequently it is somewhat lighter than sea-water. Whatever may have been its original condition, the contained air bubble would have made it practically lighter than the water aromd it, though very slightly so.

According to H. \& A. Adams, in the Genera of Recent Mollusca, Orbigny states that "the ovicapsule of S. brasilianu is 3 inches in length." As I am unable to refer to Orbigny's work and thas determine how certainly the ovicapsule he refers to was identified with its parent, the question remains doubtful how far it is to be depended upon. It would seem singular to call a circular hemispherical capsule, like that of Scaphella, "long," and that adjective would indicate some error oí identification. However that may be, if the present ovicapsule, undoubtedly belonging to the Folutide, does not come from S. brasiliana, I am eutirely at a loss to conjecture to what mollusk of this region it can be referred.

Genus VOLUTILITHES Swainson.
This genus is the Eocene parent of the recent genera of the Volutida. The V. abyssicola Adams \& Reeve is not a typical species, but belongs to a small subsidiary group, having a dentate onter lip. The type of Volutilithes is the Voluta spinosa of Lamarck.

Volutilithes Philippiana sp. nov.
Plate ix, Fig. 4.
Shell (not fully adnlt) small, elongated, fusiform; color rather dark olivaceons-ash color with a pale baud in front of the suture; unclens superficially eroded, small, apparently not mammillate or inflated when perfect; whorls six, when alult probably with one or two more, appressed at the suture, somewhat constricted in front of it; sculpture of rounded grooves, coarser on the constricted band in front of the suture,
finer and almost linear anteriorly on the last whorl, and slightly coarser again on the canal; the interspaces are flattened, narrow, but always wider than the grooves; there are also some fine, irregularly distributed spiral strie; transverse sculpture of numerous little elevated, narrow, slightly flexnous waves, which ou the penultimate whorl extend from the suture back to the constricted part, where they become obsolete; on the last whorl they are more irregular, fainter, and barely pass the periphery; in a perfectly adult shell they would probably be obsolete on the last whorl; these waves average somewhat less than two millimeters from erest to erest at their most prominent part a little behind the periphery on the earlier whorls; the lines of growth are fine, regular, distinct under a lens and minutely decussate the spirals; aperture narrow, pointed behind, rather wide in front, with no constriction for the canal; outer lip thin, slightly receding near the suture, not lirate within; inner lip slightly exeavated, white, with a polished film of glaze over the part from which the limy layer has been absorbed; pillar thin, sharp, nearly straight; canal wide, not differentiated ; there is a single prominent, fine, sharp plait just behind the edge of the pillar, and a little further back two smaller subequal plaits closer to each other than the anterior one of the pair is to the larger anterior plait; all are very oblique. Longitude of shell, 36.5 ; maximum latitude, 14.5; longitude of aperture, 19.5^{mm}.

Hab.-Station 2791, in south latitude $38^{\circ} 05^{\prime}$, and west longitude 75° 53^{\prime}, oft the sonthwest coast of Chili, in 67% fathoms, mud; bottom temperature 370.9 F .

This unique shell belongs to a gronp of which the other known representatives appear to be extinct. V. D'Orbigmyana, V. Domeykoana and V. gracilis Philippi, V. indurata Conrad as well as V. triplicata Sowerby, all from the tertiary strata of Chili and the western coast of America, are members of it. The Voluta graciiis (Philippi, 1887; not of Lea, 1833, or Swainson, 1842) is perhaps its nearest relative, aud probably in a large series would prove to be hardly speeifically distinct. The name gracilis being several times preoccupied, I have therefore applied the name Philippiana to the present species, so that if future researches shonld indicate it to be identical with the tertiary fossil the name will extend to that also. It is intended as a slight compliment to Dr. Philippi, of Santiago, whose labors for nearly three quarters of a century have so much ameliorated malacology.

The west American tertiary group in question may turn out to be, as a whole, equivalent to but one species, in which case V. triplicata of Sowerby Tas first described. But until I have seen specimens of the varions named forms, I would lay no stress on this observation sug. gested by the rather indifferent figures. The present species appears, more nearly than any other recent form, to represent the typical Volutilithes, while the T. abyssicola is shown by Mr. Watson, from the adult Challenger specimens, to be more nearly related to Lioderma Conrad.
V. Philippiana and its fossil precursors represent a step in the line of descent from the Cretaceous forms of Volutide toward Scaphella and Aurinia as well as Voluta proper. Scaphella is probably descended from older representatives of the present gronp, while Voluta proper came through the line of forms like Lyria, so abundant in the Eocene. It is true that the present species is not spinose at the shoulder like the types of the genus, but even those are frequently smooth, aud the Chilian and Oregonian fossils are frequently nodose and almost spiny at the shoulder.

The soft parts of this species were preserved. The exterior of the body is of a yellowish color and, as contracted in alcohol, rather rugose; the foot is moderately pointed lehind, in front auriculated at the corners and double-edged; there is no operculum or rudiment of an opercular gland; the head is wide, with rather long, rounded, moderately stont tentacles with an expansion at the outer bases, but no eyes in the specimen before me. The siphon is long and has an appendix near its base on each side of the gutter ; the gill and osphradium are as usual; the anus is simple, not free or prominent; near it are a purpuriferous and a large slime-gland, on the dome of the mantle; the verge is small, clavate, with a smaller conical tip, not flattened, about as long as one of the tentacles but thicker. It is situated immediately behind the right tentacle.

The characters of the group as far as can be judged from present data are as follows: Shell transversely ribbed and spirally striated; nucleus minute, not conspicuously difierentiated from the immediately succeeding whorls ; plaits few, moderate, oblique; auimal devoid of an operculum and blind.

Scaphella proper has a membranons larral shell and a styliferous nuclens, and the surface of the adult is usually smooth ; Fulgoraria has a similar or at least a swollen mammillary nucleus and spirally striated and ribbed whorls with stroug plaits.

A careful study of the nuclei in well preserved recent and fossil Tolutide will do much toward elncidating the relations of its subordinate groups. In my report on the Floridian Pliocene, a begiuning has been made in this direction. The present species came in very opportunely to assist in determining the characters of the soft parts. An empty ovicapsule dredged with it resembles those of Scaphella magellanica, but was only about 10^{mm} in diameter at the base.

Family MITRIDE.

Genus MITRA Lamarck.
Mitra Bairdii Dall.
Plate xi, Fig. 7.
Mitra (Turris?) Bairdii Dall, Bull. Mus. Comp. Zoöl., Xvif, p. 161, Jnne, 1889.
Shell waxen gray or greenish, elongated, acnte, with ten or eleren flattened whorls; nuclens ? (wanting); sculpture consisting on the
earlier whorls of up to fourteen little raised hardly flexuous transverse wares extending clear across the whorls, rounded, equal throughout their length, and separated by sballow slightly wider interspaces; this trausverse seulpture becomes gradually fainter, and entirely obsolete on the last whorl, which in the adult seems only marked by the fine and slightly irregular ineremental lines which give to the thin, smooth, pale brown, and slightly fibrous epidermis a silky appearance; spiral sculpture of numerons very fine, close, half obsolete grooves or scratches, and six or seven deeper, stronger grooves encircling the canal; whorls mostly flattened, the last slightly rounded; suture distinct, appressed; aperture white, the outer lip thin, sharp, with no lire in the typical specimen; column with three plaits, the auterior one faint; canal short, nearly as wide as the aperture, hardly recurved; siphonal fasciole distinct; soft parts whitish, with no operculum. Longitude of shell (nuclear whorls lost), 35 ; of last whorls, 17 ; of aperture, 12 ; maximum latitnde of shell, 9^{amm}.

Hab.-Une living specimen, at Station 2628, 100 miles southeast by sonth half south from Cape Fear, North Carolina, in 528 fathoms, sellow mud; bottom temperature 380.7 J .
The soft parts are so contracted that they could not be extracted without breaking the shell. This species looks a good deal like a Terebra in form. None of the described species at all resemble it.

Mitra Hanleyi Dohrn.

This species was dredged in 20 fathoms, 90 miles southeast from Cape San Roque, Brazil, at Station 2758.

> Subgenus CONOMITRA Conrad.
> Conomitra intermedia sp. nov.

$$
\text { Plate v, Fig. } 3 .
$$

Shell elongated, white, polished, fusiform, with a large smooth shelly nuclens and seven or more whorls; suture distinct, not channeled; whorls with a slight shoulder a short distance in from of the suture, on which are a series of short, narrow, irregularly spaced little-elevated riblets, which, except on the earliest whorls, become almost immediately obsolete; other transverse seulpture ouly of iucremental lines; spiral sculpture of microseopic spiral striæ, often obsolete, and a few fine faint threads on the canal; aperture narrow, elongated; outer lip (broken) thin, not internally lirate; pllar and body with a thin glaze of polished enamel; plaits four, sery horizontal, the posterior the highest; pillar straight, attenuated in front; canal short, hardly differentiated from the aperture; maximum altitude of shell, 15.5 ; maximum latitude, 5.7^{mm}.

Hab.-U. S. Fish Commission Station 2750, off St. Bartholomew, West Indies, in 496 fathoms, sand; bottom temperature $44^{\circ} .4 \mathrm{~F}$.

This curious little shell very uearly bridges the gap between Conomitra and Mitra. The large inflated nuclens is a common characteris-
tic of deep water species of many diverse groups; the typical Conomitra has a small but also rather bulbous unclens. It is possible that the whiteness of this shell is due to its dead condition, but it has the unmistakable abyssal facies and is probably colorless in life. Only two dead specimens, one a mere fragment, were obtained.

Family FASCIOLARIIDA.
 Genus FASCIOLARIA Lamarck.

Subgenus MESORHYTIS Meek.

> Mesorhytis costatus sp. nov.

Plate v, Fig. 5.
Shell small, thin, slender, the axis slightly bent, of a pale cinerenus or buff color, with six or seven whorls; nucleus large for the size of the shell, rather inflated and loosely coiled, polished white; spiral sculpture on the early whorls from four to six little-elerated flattish threads with subequal interspaces; between the suture and the periphery on the later whorls these spirals disappear but persist on the periphery and between it and the succeeding suture or the end of the canal; on the last whorl these threads become faint or obsolete, but on the preceding whorls do not enlarge in crossing the ribs; transverse sculpture on the earlier (except the first two) whorls, of eight to eleven rather stout narrow ribs or costæ, extending from a little in front of the suture over the periphery, where they are strongest, to the next suture, and overrun but not nodulated by the spirals; on the last whorl the transrerse as well as the spiral sculpture becomes obsolete; suture distinct, somewhat appressed; whorls noderately rounded; canal slender, slightly tortuous and distinctly recurved ; aperture elongate, pointed before and behind, the canal distinct; outer lip thin, simple, not internally lirate; pillar slender, twisted , with a thin glaze; one shorter auterior and two posterior strong transverse plaits. Maximum longitnde of shell, 14 ; maximum latitude of shell, 4 mm .

Hab.-U. S. Fish Commission Station 2751, south of St. Kitts, West Indies, in north latitude $16{ }^{\circ} 54^{\prime}$ and west longitude $63^{\circ} 12^{\prime}$, in 687 fathoms, globigerina ooze; bottom temperature 390.9 F .

This species, like M. Meekii Dall, was taken withont the soft parts. It is a minute fusiform Fasciolaria with the transverse plaits of a Mitra. In Ptychatractus, which seems to be its uorthern representative, the plaits resemble those of Fasciolaria and not those of Mitra. The gronp was first differentiated by Meek as a Cretaceous fossil. Both the recent species inhabit the deep waters of the Antilles. A fragment of still another species, or a Cordieria, insufficient for description but evidently new, was dredged in 496 fathoms, at Station 2750, near St. Bartholomew, West Indies.

Genus LATIRUS Montfort.

Subgenus LEUCOZONIA Gray.
Leucozonia cingulifera Lamarck.
Leucozonia ocellata Gmelin.
These two species were collected at the Abrolhos Islands, near Porto Allegre, Brazil.

Genus FUSUS Lamarck.

Fusus ceramidus Dall.
Plate vi, Fig. 6.
Fusus ceramidus Dall, Bull. Mus. Comp. Zoöl. xviri, p. 171, June, 1889.
Shell of a waxen or brownish yellow color, of a peculiar waxen subtranslucency, nine-whorled, strougly transversely ribbed, with obscure spiral sculpture, and an imbricated band in front of the suture. Nucleus white, smooth, small but swollen. Transverse sculpture of seven or eight rounded ribs, stouter and more prominent on the early whorls, and on most of them not quite reaching the suture ; also sharpish lines of growth which in front of the suture are elevated into flattish, somewhat irregular imbricated scales, forming a narrow band in front of the suture. Spiral sculpture of primary and finer secondary threads, one or two of the former near the periphery becoming sharper and more prominent as they pass over the ribs; on the later whorls all the spiral sculpture has a worn or partially obsolete appearance. Aperture large, canal moderate, curved to the left; outer lip not much thickened, internally lirate; a callous ridge on the body, near the outer lip; the inner lip smooth, or with a few lire near the canal. Maximum longitude of shell, 46.5 ; of last whorl, 32 ; of aperture and canal, 26 ; maximum latitude of shell, 18.7^{mm}.

Hab.-Near Barbados, in 73 to 103 fathoms, sand; bottom temperature 60° to $71^{\circ} \mathrm{F}$.

Fusus æpynotus Dall.

Plate vir, Fig 5.

Fusus œpynotus Dall, Bull. Mus. Comp. Zoöl., XViII, p. 169, June, 1889.
Shell small, slender, white, eight-whorled; nucleus milk-white, strongly transversely plicate below, above smooth, rounded; spiral sculpture of (on the last whorl eighteen) stroug rounded threads of which four or five are visible on the upper whorls; these are slightly swollen, but not keeled, where they pass over the ribs; between these are numerous fine close-set threads slightly marked by inconspicuous lines of growth. The transrerse senlpture consists of (on the last whorl ten) rounded, rather close, stout ribs, which pass clear over the whorl and are straight
and slightly larger behind ; suture appressed and wavy, conspicuous; canal stont, slightly twisted, aperture subovate, marginated: outer lip internally lirate with two or three stroug denticles anteriorly; inner lip smooth, or slightly granulous. Maximum longitude of shell, 24 ; of last whorl, 16.5 ; of aperture and canal, 12.5 ; maximum latitude of shell, 9^{mm}.

Hab.-U. S. Fish Commission Station 2648, off Cape Florida, in 84 fathoms, green mud; also at Blake Station 36, in $8 \pm$ fathoms, Gulf of Mexico ; off Sombrero, in 70 fathoms.

This species recalls F. Bocagei Fischer, dredged by the Travailleur in about 500 fathoms; but that species, from an anthentic specimen, is shorter, stouter, with only seven transverse ribs and three principal spiral threads on the spire. The fine spirals in F. Bocagei are also more conspicuous. F. cepynotus has a little the aspect of Fusus carolinensis Verrill, especially the young ones, while differing in many details, especially the number and straightness of the ribs. Its nearest relative would seem to be a form named by Borson Fusus lamcllosus, from the Tertiary of Modena ; but this is merely the young of F. rostratus, and the adult has very different characters.

Fusus alcimus Dall.

Plate vil, Fig. 6.

Fusus alcimus Dall, Bull. Mus. Comp. Zoöl., xviII, p. 170, June, 1889.
Shell resembling F. cepynotus, but shorter and more acute at both euds, with only six much more oblique and proportionally stouter ribs, coarser revolving spirals, and noue of the fine spiral striation which exists between the primary threads of F. cpynotus. It has eight whorls; the nucleus is strongly plicate below; the interspaces between the ribs are deep, and in them the spirals are much closer together than they are on the summit of the ribs; on the last whorl there is sometimes an intercalary single fine spiral thread. The color is yellowish, with touches of dark brown; the canal is very short; the aperture is contracted, the lips much thickened, the outer one strongly internally lirate, the inner one smooth; the suture is inconspicuous and very much waved; maximum lougitude of shell, 15 ; of last whorl, 9.2 ; of aperture and canal, 7 ; maximum latitude of shell, 7 mm .

Hab.-Gulf of Mexico, in 95 fathoms, 100 miles north of Yucatan.

> Fusus alcimus var. Rushii Dall.

Fusus (alcimus var.?) rushii Dall, op, cit., p. 170, 1889.
Shell smaller, pure white, nucleus hardly plicate, depressious between the ribs less deep, ribs less prominent and hardly oblique. Longitude 8.5 ; latitude, 4^{mm}.

Hab.-West of North Bemini, Bahamas, in 200 fathoms; Dr. Rush.

FAMILY BUCCINIDE.

Genus BUCCINUM Linné.

Buccinum viridum sp. nov.

$$
\text { Plate vi, Fig. } 9 .
$$

Shell delicate, thin, inflated, six-whorled, with a delicate greenish gray, slightly fringed, dehiscent epidermis ; spiral sculpture of numerous subequal flattish threads, with uarrower rounded interspaces and no intercalary threads; these threads are, as usual, slightly coarser on the base and finer behind the shoulder of the whorl near the suture; at the shoulder a single more prominent but not much larger thread slightly turriculates the spire; whorls full and rounded, especially on the base; suture distinct but not channeled ; aperture wide, outer lip somewhat patulous in front, receding toward the suture; canal wide, short, hardly discriminated from the aperture, very slightly recurved; fasciole distinct but not prominent; pillar thin, twisted ; inner lip smooth, white, slightly excavated, or the limy outer layer of the shell is there absorbed and the space covered with a thin wash of polished glaze; except for the epidermis the shell is pure white. The outer lip is very thin and but slightly reflected. The nuclens is eroded on the surface so that its character is not determinable. Maximum longitude of shell, 46; of aperture, 24 ; maximum latitude of shell, 29^{mm}.

Hab.-Station 2839, offi Santa Barbara Islands, California, in 414 fathoms, sand.

The operculum is oval, slightly pointed towards the extremities, thin and normal, the nucleus being near the margin about three-eighths of the distance from one end toward the other. The soft paris are whitish, the tentacles moderate, the swelling for the eye present, but usually unpigmented, though a trace of the color seems to remain in some specimens. The gills and osphradium are as usual. The verge is as long as the foot, stout, geniculate, razor-blade shaped, the thin edge being to the right or when recurved and turned under, as is generally the case, to the left; the distal end is squarish, rounded at the corners, the thicker angle terminating with a small acorn-shaped papilla. The dentition recalls that of B. undatum, but the central tooth has five sharp, spike-shaped, subequal denticles, the two inner cusps of the laterals, while smaller than the outer cusp, are more nearly its size, the middle one of the three teuds to be smaller and to have one or even two miuute denticles, one on each side in the latter case, near its base. The formula would be ${ }_{3}^{1} \cdot \frac{1}{5} \cdot \frac{1}{3}$ and the full formula of a fully developed lateral would be $\frac{1}{1+\frac{1}{3} \cdot 1}$. None of the specimens were fully mature, though the one figured had formed the begimning of the reflected lip, so that its shape could be ascertained; but it is probable that fully mature specimens would have the reflection wider and stronger.

Genus CHRYSODOMUS Swainson.
Chrysodomus amiantus sp. nor.

Plate v, Fig. 10.

Shell large, thin, white, with six whorls and a small but prominent inflated subglobular nuclens; spiral seulpture of numerous close-set rounded narrow ridges, of which part are larger than the others; on the early whorls two or three of the primaries are conspicnons on the periphery, with one or two finer ones intercalated; later the peripheral spirals merge with the other primaries, as to size and prominence, and on the last whorl there are four or five intercalary threads between the primaries, the space between the latter, from center to center, areraging 2.5^{mm} to each set; transverse sculpture shows only in fine, slightly irregular lines of growth; the whorls from and includiug the third are inflated, and the suture, thongh not channeled, is strongly marked; the canal is short and recurved, the siphonal fasciole indistinct; the aperture is wide, the outer lip, prominent in the middle, receding toward the suture and the canal, smooth not thickened, whitish internally; inner lip concave, with a thin glaze of polished callus, slightly brown tinted; pillar twisted and the axis minutely pervious; the aperture longer than half the shell; operculam brown, moderately stout, apically pointed; maximum longitude of shell, 76 ; maximum latitude, 43 ; lougitude of aperture, 45^{mm}.

Hab.-Station 2839, near the Santa Barbara Islands, off the coast of California, in 414 fathoms, sand; bottom temperatnre not taken.

This fine speches does not require any comparsons to indicate its distinctuess from forms already known. Several specimens of different ages were obtained, all the adnlts showing more or less strougly the effect of carbonic acid or other eroding ageney on the upper whorls, though living when obtained.

The soft parts are whitish externally. The foot double-edged in front, but not amriculate, the tail-end gently rounded; the tentacles, as contracted in alcohol, are subtriangular and somewhat flattened; there is no pigmented organ of vision nor any distinct restige of such an organ without pigment. The gills aud osphradium are as usual; also the female muciparous glamd, which furnishes the material for the ovicapsules; the rent projects slightly, but is not free; the penis is not remarkably large, but is geuienlate as usual, its front edge thick and rounded, its hinder edge sharp and transversely wrinkled, slightly projecting distally behind a stout, short, conical papilla. The male, as usual, is smaller than the females. The dentition resembles that of Chrysodomus despectus, as figured by Friele (Moll. Norske Nordh. Exp), I, Pl. Iv, Fig. 9), or even wore that of C.latericens (op. cit., Pl. VI, Fig. 16). from which it differs by the onter denticle of the laterals being proportionately a little longer, and the three denticles of the rhachidian being Proc. N. M. S! - 21.
more slender, close set, and longer in proportion to the base; the base itself is of a yellow-brown tinge; the laterals and the cusps of the median teeth are of the usual pale-amber color.

I do wot remember to have seen atteution called to the very general dark color of the "false" or "supplementary gill," or osphradium, as compared with the other soft parts. It is always darker thau the true gill ; the latter is msually darker than the general surface of the mantle, though not so dark as the substance of the liver.

Chrysodomus griseus sp. nov.
Plato v, Fig. 6.
Shelt thin, solid, rather acutely pointed when perfect, but almost invariably eroded at the tip, eight whorled, covered with an olive glay epidermis, the substratum, pillar, throat, and reflected lip milk-white; nucleus eroded, small; suture distinct, not appressed or channeled; whorls full and rounded ; transverse senipture of twenty to twenty-five, narrow somewhat irregular arcuated wave like ribs, which ou the earlier whorls ofteu reach from suture to suture but are strongest on the periphery; some speeimens have them faint, others the majority have them strong, but in all they become more or less obsolete ou the last whorl; spiral sculpture of rather coarse, rom much elevated cinguli, with narrow interspaces, slightly reticulated by the incremental lines; variable in strength but usually covering the whole surface; in five young specimens the surface over the sculpture is somewhat polished, in adults it has a more rude appearance; aperture oval, wide; the outer lip flexuous as in Buccinum, more or less (in some specimens very much) reflected; margin simple, smooth; body polished, the surface slightly excavated and glazed ; pillar thin, simple, twisted; the axis widely pervious in the young, minutely or not at all in the adult ; canal short, wide, slightly recnered ; there is no siphonal fasciole; opervilum large, thin, ovoid, slightly curred, with au apical nuclens. Maximum longitnde of shell, 32 ; maximum latitude, $18^{\text {mmu }}$.

Hab3.-U. S. Fish Commission Station 2839, near the islands off Santa Barbara, California, in $41 \pm$ fathoms, grey sand; temperature not recorded.

Animal whitish, with a little gray about the head and tentacles. General form and details as in C. amiuntus, except that the tentacles are longer aud more cylindrical and the verge is proportionately larger, more cylindrical, with the termination swollen, slightly hood-shaped, with a granular depressed oval area set obliquely at one side and no visible termiual papilla. I am uncertain how much of the difference noted in this organ between different species is due to its different degrees of extension when placed in alcohol and differences in contraction taking place mader the influence of aleohol.

The dentition agrees with that of ('. cmiuntus, lont is of comse on a much smaller seake. The sexmal differences in C. griseus are less tham
in the previons species, the females being generally somewhat more ro. bust and having the concave wave in the outer lip somewhat more pronounced. The operenlum of the extremely young is buccinoid, but this character is lost rery early. I'erhaps this may be found to be the case throughont the genus.

Chrysodomus aphelus sp. nov.

Plate vi, Fig. 7.

Shell small, bncciuiform, six whorled, smouth, covered with a green-ish-gray epidermis; muclens minute, eroded; whorls full, well rounded; suture distinct, not deep nor chanmeled; sculpture only of faint incremental lines and a few obscure spiral traces; aperture moderate, the onter lip thin, very slightly reflected, flexnons; body and pillar lips white, polished, withont callus; pillar short, stroug, curved, obliquely truncate anteriorly, well recurved; canal short, wide, well defineel, and recurvel ; throat smooth, white; axis not pervions ; operenlum normal. Maximum longitude of shell, 30 ; maximum latitnde, $15^{\text {mum }}$.
llab. -Station 2S39, in 414 fathoms, off the coast of Santa Barbara county, California.

The soft parts of this species agree with those of the preceding, C. yrisens, except that in the sole male spectmen a blunt papilla protrudes from the oval depressed area at the end of the verge, and a little more than one-fourth the way from the external bases of the tentacles torward their tips are sitnated eyes of unusual size and blackness. The dentition does not differ from that of C. griseus. Here we have the interesting fact of two species of the same group, wearly related, from the same identical spot in the archibenthal region of the Pacific, in one of which the environment has induced blindness, while in the other the eyes have been retained and become larger, and in all probability more sensitive. This seems to me to indicate the existence of a certain amount of light on the sea bottom at over 400 fathoms:

This modest little shell presents few salient characters, but its very simplicity is wotable and attractive. With the preceling species it belongs to a peculiarly bucciniform gronp, which are characterized by a strongly reflected lip, short canal, and minute molens in the shell, but which, so far as the soft parts are concerned, present no obvions points of difference having systematic value from the larger and, so far as the shell is concerned, more normal species from shallow water.

Subgenus SIPHO Mörch.
Cluysodomus (Sipho) Rushii Dall.
Plate V, Fig. 1.

shell small, thin, white, elongated, with a furfureseent epidermis amb six. whorls. Nuclens regular, white, smooth, but becoming gradually
spirally striate; whorls well rounded; suture distinct; spiral senlpture of (between the sutures five) primary threads, with a smaller thread in the intervals and finer ones on the anterior part of the last whorl and canal; these are crossed by fine flexnous lines of growth which decussate the threads, or give them, in strongly sculptured specimeus, a somewhat beaded look; there are also twelve to fifteen faint flexuons ribs crossing the whorl, tending to become obsolete on the last half of the last whorl, and more marked on some specimens than on others; these are quite concave at and behind the periphery ; canal short, narrow, twisted to the left ; columella rather concave; aperture entirely simple, with no visible callus; operculnm rather wide and short. Maximum longitude of shell, 11; of last whorl, 7.5 ; of aperture and canal, 5.5 ; maximum latitnde of shell, 4.5 ; of aperture, 1.25^{mm}.

Hab.-Station 2644, off Cape Florida, iu 193 fathoms, sand; bottom temperature 430.4 F ; Station 2668, off Fernandina, in 294 fathoms; also in 205 fathoms, off Fowey Rocks, in the Straits of Florida; by Dr. W. H. Rush, U. S. Navy.

This is a delicate and pretty little shell, which is, in its general characters, very much like the young state of Tritonidea limbata Philippi (+ Fusus pulchclus Pfr. nou Phil.); but that is more strongly sculptured and has a different nucleus, beside being clouded with color.

Chrysodomus (Sipho) testudinis sp. nov.

Shell short, stont, white, with five or more whorls; apex eroded ; the last two whorls show about fifteen short, stont, transverse ribs, which do not reach the suture and become obsolete a little in front of the periphery ; they are most prominent at the shoulder of the whorl; behind them there is a moderate constriction and the whorl is strongly appressed in front of the sutme; beside the ribs, the trausverse senlpture consists of irregular, strong, incremental lines; spiral sculpture of numerous coarse, close-set, rounded threads, mostly alteruatiug larger and smaller or more and less prominent near the suture; these are a little gramulated by the incremental lines; there is a thin, pale yellow. hispid epidermis; aperture elongate, outer lip slightly thickened with a band of livid pink just inside the slarp simple margin; body and pillar with a solid, also slightly pinkish, callus; pillar a little tortuous, attennated in front ; canal rather short and wide, somewhat recurved, not well differeatiated from the rest of the aperture. Maximmon longitude of (decollate) shell, 30; of last whorl, 22.5; of aperture, 18; diameter, 15^{mm}.

Hab.-Station 2807, in 812 fathoms, ooze, near the Galapagos Islands, Pacific Ocean; temperature 380.4 F .

This is a very strongly marked species, but the specimens were greatiy eroded and none showed the nuclear whorls or the sconpture on the canal or near the apex.

It has the presutural chamnel of some of the plemotomoid forms, but there is no moteli or fasciole. The soft parts are as msmal ; the animal possessed small pigmented eyes and the operenlum offered no peenliarities. I do not know any species which greatly resembles it.

Gonus PISANIA Bivona.

Pisania pusio Linue.
This species was abundantly enllected at the Abrolhos Islands, Brazil.
Gemus Engina Gray.
Engina turbinella Kiener.
Collected at the Abrolhos Islands.

Genus NASSARIA Link.
Subgenus NASSARINA Dall.
Nassarina columbellata Dall.

> Plate vi, Fig. s.

Nassarina columbellata Dall, Bull. Mns. Comp. Zoül., xvitt, p. 182, Jnne, 1824.
Shell pure white, attemated anteriorly, rather aentely conical behimd, with eight whorls. Nuclens two-whorled, polished, smooth, milk white, rather large; spire flatly conical, with a conspicnous suture; upper whorls with about five strong, close-set, equal threads, most conspicnous in the interspaces between the mmerons (on the last whorl eighteen) flattened transverse ribs, which cross the whorls but stop short before the sutures, giving a grooved aspeet to the latter, which is increased by the existence of a peripheral line or space, wider than any of the others, between the two spirals nearest the periphery; last whorl attenuatel toward the long eanal, but not constricterl, as in N. Bushii Dall; aperture long, narrow, contracted, with an elevated continuons margin, interrupted only by the canal, which is recursed near its termination; outer lip with four or five internal teeth; inmer lip with five or six finer, smaller ones; whorls not rounded above. Maximmm longitude of shell, $1 \geq .2$; of last whorl, s; of aperture, 6 ; maximum latitnde of shell, 4.5^{mm}.

Hab.-U. S. Fish Commission Station 2367, off Cape Catoche, Yucatan, in 124 fathoms, sand.

The upper whorls of this shell are flattened aud sculptured much like those of Cohumbella similis or transliratu. The species of this group, seem to bear much the same sort of a relation to Nassaria proper as Strombina does to the typical Colambella.

Family NASSIDE.

Genns NASSA Lamarek.
Nassa scissurata Dall.
Plate v, Fig. 2.
Nana seissurata Dall, Bull. Mus. Comp. Zoül, Xviri, p. 145, 1889.
Shell short, conical, glistening, white, clouded with light brown or buff; whorls stont, well rounded; nuclens of two translucent turns, smooth, or transcersely slightly wrinkled; remainder, comprising fire or six turns, separated by a deep but not chanueled suture; senlpture of (on the last whorl abont fourteen) stont, rounded ribs, with wider interspaces, completely crossing the whorls, and fine incremental strie; spiral scnlpture of (on the last whorl abont ten) revolving ridges, faint in the interspaces, strongly ovally noduled on the ribs, three rows showing ou the upper whorls; ribs interlocking at the sutures; aperture ronnded, with its edge contiunons and raised, contracted in front of a stout varix, lirate ou both sirles; a stout tooth on the body and another at the base of the pillar ; a deep groove behiud the siphonal fasciole; canal short, strongly twisted; operenlum serrate at the siles. Longitude of shell, 12 ; of last whorl, 8 ; of aperture, 5 ; maximum latitute of shell, 7.5^{mm}.

Hab.-The Antilles and Gulf of Mexico, in 76 to S05 fathoms, rocky bottom; bottom temperature 580.5 to $6.5^{\circ} \mathrm{F}$.

This species is clearly distingnished from N. Hotessieri, which is its nearest relative, by the character of the sutures, which are not channeled, by its fewer strongly nodulated ribs, and by the curve of the ribs, which in Hotessieri, as in most ribberl movalres, are conrex forward on the periphers, and then curve a little backward, while in N. scissurata the eurve is in a contrary sense, as is at once evirlent on comparing two specimens. The total emve is not great, but quite sufficient to form a marked distinction.

This species has the bright waxen Inster of a deep-water shell, and probably lives in between 75 and 200 fathoms depth. Its senlpture recalls that of N. spimulosa PLil.

Nassa Townsendi sp . nov.

Plate xir, Fig. 9.

Shell small, short, very stout, yellowish white, with six whorls; muclens eroded; transcerse senlpture of about sixteen narrow, rounded, low riblets, which extend from suture to suture, but on the last whorl fale away in front of the periphery; the interspaces are nearly twice as witle as the ribs, which in front of the suture have two or three small, prominent morlnles coronating the whorls, caused by the intersection of as many spiral threarls, which, however, are faint or obsolete in the
interspaces; ineremental lines not prominent; spiral sempture of (in addition to the presutnral theads above mentioned) mumerons rather faint threads on the base of the last whorl and on the canal ; surface somewhat polished with a rery thin epidermis; aperture short, wide, with a thin, simple outer lip, perhaps thickened later; no internal lires; imer lip with a smooth, moderately thick, white callus; canal very short and slightly recmed ; edge of the pillar raised and sharp. Max. imum longitude of sholl (withont nuclear whorls), 10 ; diameter, 6 (6 men.

Hab-Station 2807, near the Galapagos Islands, in 812 fathoms, ooze ; temperature $35^{\circ} .4 \mathrm{~F}$.

This species is nearest to N. bubylonica Watson, from wear the Philip. ine Islands, and like that has a chrysolomoid operculum. It is, how. ever, stouter, with a proportionately shorter spire, compared with the last whorl, and is more inflated. The operculum is also more elongaterl.

This species is named in honor of M1. U. H. Townsemd, of the U. S. Fish Commission, one of the naturalists connected with the Albatross in her later explorations.

Family COLUMBELLID E.

Geuns COLUMBELLA Lamarek.
Section ASTYRIS IF. \& A. Adams.
Columbella permodesta sp. nov.
Plate v, Fig. 4.
Shell smail, thin, polished, with five rombed whorls, a pale yellowish epiclermis eovering a bluish white substratum; transerse soulpture only of faint ineremental lines ; spiral seulpture of fine spiral threads on the base of the shell, obsolete or absent between the sintures; aperture wide, oval; outer lip thin, simple, very slightly reflected ; axis pervious; canal wide, extremely short, hardly differentiated; pillar smooth, twisted, not callons ; suture distinct, not appressed or chameled; mnclens romuded, slightly Hattened, senerally croded. Maximum Iongitude of shell, $1 \pm$; maximum latitnde, 7^{mm}.

Llab.-Station 'Ss40, off the Santa Barbara Islands, California, in $2 \pi f f$ fathoms, mud.

The solt parts of this animal are of a greenish white color. The foot is mnsually long, narrow, pointed behind, double-edged, truncate, and distinctly aurienlate in front. The tentacles are rery short, stont, blunt, and stand straight forward with a notch between them rather than laterally from the head ; the basal part is swollen ontwardly and there are pigmented eyes, but so hidden beneath the cuticle as to be readily overlooked when the latter is rendered opaque hy alcohol. The sides of the foot are smooth, they are marginated below as in Limax, so that the sole is distinctly marked off from the upper surface. The whole anmal exules an abmulant mucus. The proboscis is stont, its opening notched below. The gills are mather large, but otherwise
as usual. The osphradium also presents nothing unusual. The rerge is extremely long, slender, nearly cylindrical, situated on the right side a little distance behind the right tentacle; as contracted in alcohol it was about 7^{mm} in length, tapering gently to a subconical point, without papillie or appendages of any sort. The dentition resembles that of C. Hölbollii as figured by Lovèn, and the species evidently belongs to the same section of the genus, though with a more buccinoid shell than any of the others. The median tooth is a wide, flat, arcuate, edentulous plate without anything resembling a cusp. The laterals have the usual form and two rather rounded denticles near the tip.

The operculum recalls that of Nassa, but is ronnded at the corners with an entire edge, the nuclens within the margin at the smaller end and a lunate ridge of yellowish translucent callus bounding the scar internally.

A large number of specimens of this species were taken, living at the locality indicated. All were more or less eroded at the tip and were incrusted with a scaly combination of calcareous matter and iron of a rusty color.

> Section columbella s. s.
> Columbella mercatoria Lamarck.

Collected at the A brolhos Lslands.

> Section ANachis Adams.
> Columbella Saintpairiana Caillet.

Collected at Station 2765 , off the Rio de la Plata, in $10 \frac{1}{2}$ fathoms, sand.
Columbella Verrillii Dall.
C. (dstyris?) Terrillii Dall, Bull. Mus. Comp. Zaïl., xvill, p. 190, Pl. xix, Fig. \&.
(Sollected at Station 2756 , in 391 fathoms, saud, off the Para River, Brazil.

Section vitidella swainson.
Columbella moleculina Duclos.
Collecterl at Stations 2764 and 2765 . off the Rio de la Plata, in 10. $\frac{1}{2}$ fathoms, saud.

> Subgenus AESOPUS Gould.
> Aesopus Metcalfei (Reeve) Dall.

Aesopus Metcalfei Dall, op. cit., xviil, p. 194, 1889.
Terebra Metcalfei Reeve.
Collecterl at Station 2764 , off the Rio de la Plata, in $10 \frac{1}{2}$ fathoms, sand. It was previously known from Santo Domingo.

Family MURICID E.

Subfamily MURICIN无.
Genus MUREX Linne.
Murex (Chicoreus) Leeanus sp. nov.

Plate vir, Fig. 1.

Shell strong, stont, pale yellowish brown, with three rarices to each whorl, and a faint intervarical node between each pair of varices; the varices toward the apee fall slightly short of completing a whole whorl, so that they are slightly spirally arranged; the deficit on the whole shell of six and a half whorls (excluding the unclens) is about one-quarter of a turn, so that the great varical spines on the spire are not directly over one another; nuclens minute (lost in the specimen); first whorl or two with eight or ten small spiny or scaly nodes; at the third whorl the spines begin to take on the characteristic trialate arrangement; spiral seulpture of rather fine, rounded threads, almost miformly dis. tributed, slightly coarser in front of the periphery and on the varices, and in front of the suture for a short distance nearly obsolete; the interspaces are narrow grooves, with very rarely an intercalary thread; there are also fine microscopic spiral stria; this spiral sculpture, with the qualifications noted, covers the whole shell; transverse seulpture of intervarical nodes obsolete or obscure on the last whorl, growing stronger and sharper toward the apex; apart from the varices the only other sculpture, in a transverse sense, is due to irregularities of growth or faint incremental lines; the rarices on the last whorl are slightly: elevated, rounded ridges, extending from the suture to the end of the caual; behind the periphery the whorl is flattened; at the periphery or shoulder of the whorl each rarix is extended in a strong, stout, single hollow spine, rounded behiud, deeply narrowly gronved in front, curv: ing slightly upward and more strongly backward toward its distal end; the aperture is ovate, rounded behind, a little pointed in front, with a thin, raised edge, white or waxen internalls and withont denticulations; the canal is closed, long, stont, obliquely truncate in front, showing two older termini at the left beside the one in actual use. Maximmongitude of shell, $70 ;{ }^{\circ}$ maximum latitnde, including spines, 6:3; latitude of aperture, 13.5 ; iongitude of aperture, $20^{m \mathrm{~mm}}$.

Hab.-Station 2838, off Cerros Island, Lower Calıfornia, in 44 fathoms, mnd.

The ouly species with which this fine Mrurex need be compared is M. centrifugus. Hinds, a member of the same famal region, which also was collected near Cape St. Lucas, in 12 to 51 fathoms. The specimens of M. centrifugus hitherto collected have not exceeded $3 \overline{5}^{m m}$ in total length. The most obsions difference hetween the roung of M. Leeamus and M. centrifugus of the same size is seen in the rarical processes. In M. Leeanus a section of these processes at any age is oval, with a
deep groove on the anterior side which is widest internally, since the lips of the groove fold over one another in most cases, so that the processes contain a permanent subtubular gutter. In M. centrifugus the rarical spines are triangular in section, the anterior mugins do not approach one another, and a shallow median sulcus on the front of the spine is the only representative of the groove of M. Leeanus. Below the main spine on each rarix in M. centrifugus are three smaller flat spines; on M. Leennas the varix is rounded and without spines. The intervarical note in M. Leeanus is obsolete or obseme and romded; in NI. centrifugus it is much more prominent in proportion and forms an oblique rather narrow rib with a kind of elbow at the periphery. The most prominent character of MI. Leernus is the rounded, root-like, sleek varical spine.

It is named in honor of Prof. Leslie A. Lee, of Bowdoin College, in charge of the seientific work of the Albutross party during the royage.
The specimen was a female. The foot is auriculate and double edged in front, slort, rounded behind, with nearly smooth sides. The eyes are small, the basal two-thirds of the tentacles behind the eyes is stout. and thick, the distal part beyond the eyes much more slender.

The dentition is typically muricoid, the radula small and narmor, the enntral tooth rery wide, very short, and with three inconspienoms denticles on its ensp. The soft parts hardly differ externally from those of Murex branderis L.

Sulgenus PTERONOTUS Swanson.
Pteronotus phaneus Dall.

Plate XI, Fig. 1.

Pteronotus phaneus Dall, Bnll. Mus. Comp Zoül., Xrimi, p. 201, June, 1889.
Shell ashy white, elorgatel, thin, six-whorled. Nueleus translucent, smooth, polished, of about one and a half whorls; whorls slightly convex, appressed to the suture behind them, connected by three rontimuous fin-like variees which in descendiag the spire make about half a revolution around it; these varices on the upper whorls were extended hackward into a little wing-like point with dentate edges; on the last whorl the lines of growth indicate that the thin margin was rommed parallel with the whorl. Transverse senlpture of fine growth limes, aml on the last two whorls at the periphery three short little namrow pinched up riblets between the rarices; spiral sculpture of fine rather faint strice and wider undulations, hardly visible except on the rarices; of these there are nine or ten on the last varix. Aperture elongateoral, internally white, thickened, smooth; canal rather long, open, bent back. Maximum longitude of shell, 17; of last whorl, 13.5; of aperture, 5 ; maximum latitude of aperture, 3 ; of shell, 8^{mm}.

Hab.-U. S. Fish Commission Station 26fe, oft St. Angustine, Florida, in 43 f fathoms, sand; temperature 430.7 F .; also at Station $266 \mathrm{~S}_{\text {, }}$ in 294 fathoms.

This speries agrees more nearly with the Thio-Pacifie sureces by having three intervarical ribs, while the Atlantic species hitherto known have ouly one. It is, however, more nearly related to I.tristichus Dall than to any hitherto described, as far as I have been able to ascertain. The body of the shell is not unlike that of P. cordismei Watson, figured in the Challenger report, but the present species has none of the semitubular spines which give the Australian shell the look of is Typhis. A variety almost wants the intervarical ribs and has the finlike point of the varices present on all of them. It is probable that there is a good deal of variation in these small details.

Genus EUPLEURA H. \& A. Adams.
Eupleura Stinupsoni Dall.

$$
\text { Plate xi, Fig. } 3 .
$$

Euplenra Stimpsoni Dall, Bull. Mus. Comp. Zoül., Xviri, p. 204, June, Is89.
Shell small, thin, whitish, not polished, with fonr varices to the whorl and fise whorls ; muelens smooth, white; spiral sculpture of extremely fine-faint strix and of (on the last whorl) five low keels, most prominent on the back of the rarices. The posterior keel is produced at the shoulder is a spine, which.on the front side of the rarix looks as if it were holding up the webbing of the varix as a tent-pole Lolds a tent; the other keels are represented on the front of the varix ouly by shal. low grooves. The transrerse senpture is composed of well-marked merempntal lines; abore the spine on the last whorl the web of the varix extends to the fifth preceding varix; below the spine it follows the ontline of the aperture nearly, and terminates midway down the canal ; the margin is even except at the spine and the ends of the grooves; aperture rounded, continuously marginate except at the open narrow canal; there are four teeth inside the onter lip in front of the spine, and three near the front of the inner lip; the canal is slightly recured, the end of the antecedent caual projecting from it at the left; suture well marked. Maximum longitude of shell, 12; of last whorl, 9; of mperture, 3 ; of canal, 4 ; maximum latitude of aperture, 2.2 ; of the varix at the spine, 2.8 ; of the shell, 7 mm .

Пab.-Near Barbados, in abont 100 fathoms; dredged alive, but the soft parts were lost before the specimens were received.

Subfamily PURPURINE.
Geuns PURPURA Brnguiere.

> Purpura deltoidea (imelin.

Purpura hæmastoma L. rar. trinidadensis Cuppy.
The abore were collected at the Abrolhos Islands, on the southeast coast of Brazil.

Subfamily CORALLIOPHILIN戽.
(icums CORALLIOPHILA Adams.
Coralliophila abbreviata Lamarck.
Collected at the Abrolhos Islands. It is frequently called C. gater Chemnitz, but that author did not use the Limnean nomenclature.

Suborder STREPTODONTA.

Superfamily PTENOCLOSSA,
Family SCALIDE.
Genus SCALA (Humphrey) Anct.
Section Acrilla A. Adams.
Scala pompholyx sp. nov.
Shell thin, conical, inflated, white, with a pale jellow epidermis, sinooth, polished, glassy muclens, aud nine or more whorls; spiral sculpture of fine numerous close-set rounded theads, with narrower interspaces, covering the whole surface, and a single stonter thread marginating the base, on which the suture runs; transverse sculpture of rather irregular rommled wrinkles following the incremental lines when present, but often absent, to some extent reticulating the stronger spirals; also of extremely thin, hardly raised, rarical lamellae, abont 32 on the last whorl; these are a little more elerated in the ricinity of the sutuse and a little fainter on the base ; suture distinct, not deep; base imperforate; aperture subcircular, a little angulated below. Maximum longituele of shell, 14 ; of last whorl, S; maximum diameter, 7.6^{mm}.

Hab.-Station 2S07, near Galapagos Islands, in 812 fathoms, ooze; temperature, 380.4 F .

This species is remarkable for its faint reticulated sculpture, its thin and inflated whorls, and its rapid increase in diameter. I do not find any closely related species to compare it with.

Scala babylonia Dall.

$$
\text { Plate xi, Fig. } 8 .
$$

Scalu babylonia Dall, op. cit., p. 311, June, 1889.
Shell thin, white, elongate, with fifteen romded whorls (nuclens lost), each ornamented with about twenty-fire thin sharp rarices, each of which has a small triangular sharp point half-way from the suture to tho periphery; behiud these the interspaces are smooth to the suture; in frout of the rarical points the surface is sculptured with raised flattopped threads with wider intervals between them and numerons still finer spiral stria; the spiral sculpture does not crennlate the varices; shell imperforate, without basal disk or cordon ; aperture small; lip thin, narrow, hardly reflected, tortnons, and a little patulons at the anterior
end of the axis; suture very deep. Longitude, 30 ; maximum latitude, 6.5^{mm}.

Hab.-Station 2678, off Cape Fear, in 731 fathoms, light gray ooze;

The specimen procured was fresh, but without the soft parts. This beantiful species somewhat resembles Verrili's figure of š. Dalliana, but is longer, much more eylindrical, and has strong spiral scolpture which is wanting in that species. The upper fonth of s. batojlonia, which would about comespond in size to S. Inalliana, has the costae more sparse, thin and erect, the whorls much rombler, and the suture much deeper than in that species. None of the other species described trom deep water are much like it.

Scala denticulata Sowerby.

Collected at Station 2762 , east from Rio Janeiro, in 59 fathoms, mnd.
Genns ACLIS Lovin.
Aclis nucleata Dall.
Aclis nucleatu Dall, Bull. Mus. Comp. Zö̈l., xvin, p. 32ē, Pl. x'int, Fig. 7, June, $18 \sim 9$.
First collected by the Blakic at St. Tincent, West Indies; then by the U. S. Fish Commission, in 294 fathoms, off Fermandina, Florida, The Albatross still further extemds the list of localities by adding Station 2750 , off the island of St. Bartholomew, in 496 fathoms, samd; temperature $44^{\circ} 4 \mathrm{~F}$.

This last specimen is the finest yet fombl, and measures $17^{m m}$ long by 4.5^{mm} in maximum diameter.

Genus PERISTICHIA Dall.

Shell elongated, acute, many-whorled, dextral, with a small, sinistral mucleus, spirally or reticulately sculptured ; aperture ovate, lips thickened; colnmella straight, simple, without plaits, a basal cord entering the aperture on the body between the pillar and the onter lip; apertnre anteriorly a little effuse, but not chanmeled in front of the pillar ; outer lip, varicoid in the adnlt, internally with a few very strong linte; solt parts?

Type, Peristichiu torete Dall.
This genus has the spire, seupture, and melens of Juthildu; the basal cord is like that of Oscilla niven; the onter lip, though less patulous aud more varicose, has something abont it whieh recalls litssoinu. It is like an Oscille without columellar plaits, or like a Molhilde with a thiekened and intermally lirate peritreme and rounded base. As far as one may judge fiom the chataters of the shell alone, this genns would indicate the passige between Mathitda and Oscilla.

Plate xi, Fig. 10.

Peristichia torcta Dall, Bull. Mus. Comp. Zö̈l., xvin, p. 340, June, 1889.
Shell slender, yellowish white, thirteen-whorled; wucleus minute, glassy, set on edge, having about two turbinate whorls; spire with the suture distinct, marked by a plain or slightly undulate thread behind it; behind this is a strong nodulated spiral, with round nodules, then a little interval and two more, slightiy smaller, similar nodulons spirals, adjaçent to each other and to the suture behind them; the last whorl would show about thirty-four nodules in its circuit ; transverse sculpture of elevated ridges, visible in the interspaces following the line of the nodules across the whorl; on the rounded base they appear as strong radii; base with oue strong cord, with a deep suleus outside of it, and the space between it and the pillar somewhat exavated; aperture ovate; pillar straight, forming almost a right-angle with the lip in frout of it; outer lip with three strong internal lire; body with the basal corl projecting, slightly covered with enamel ; onter lip swollen, varicose, and whiter than the rest of the shell, its margin undulated by the exterual seulpture; callus joining the piilar and outer lips distinct and continnous. Maximum longitude of shell, 10.75 ; of last whorl, 3 ; maximum latitude of shell, 3^{mm}.

Hab.-Coast of North Carolina, at U. S. Fish Commission Stations 2607,2608, in 18 to 22 fathoms, sand, 16 miles off Cape Lookout; bottom temperature 730 to 780 F . Charlotte Harbor, West Florida, in 2 fathoms, weedy bottou; Dall. Key West, between tides; H. Hemphill.

This is an extremely elegant shell, in which the relative strength of the transverse and the spiral scolpture varies somewhat in different imlividuals. The sides of the spire are straigidt, but the whorls are distinctly masked.

The color in very fresh speeimens is a milky white, more or less douded with pale yellowish brown on the base or sides.

```
Supertanily TAENIOGLOSSA.
```

Family TRITONIID.E.
Genus TRITONIUM Link.
Subgenus R.INLLARIA Schumacher.
Ranularia tuberosa Lamarek
Cullected off the Rio de la Plata, in $10 \underset{2}{1}$ fathoms, sandy bottom.
Family OÖCORITIDE.
Genus OÖCORYS Fischer.
Oöcorys sulcata Fischer.

Collected at Station 2751 , south of St. Kitt's, West Indies, in 687 fathoms, ooze; temperature, :390.9 F.

Family TRIFORID.E.
Geuus TRIFORIS Deshayes.
Nection mastonid Minds.
Triforis pulchella C. B. Adaus.
Collected at Station 2755,90 miles sontheast from Cape San Roque, Brazil, in 20 fathoms, shelly bottom.

Family CERITHIID.E.
Geuns CERITHIUIM Brugnière.
Cerithium semiferrugineum Lanarck.
This species, which ranges thronghout the Antilles and as far north as St. Angnstine, Florida, was collecfed at Port Castries, Santa Lucia, and at Station 2755 , off the Brazilian coast, in 20 fathoms.

Family SEGUENZiID.E.
Geuus SEGUENZIA Jeftreys.
Seguenzia monocingulata Seguenza.
Collected at Stations 2751, 2756, and 2760, in 391 to 1,019 fathoms, mud and ooze; temperat mres $37^{\circ} .9$ to $10^{\circ} .4 \mathrm{~F}$. The sonthermmost station is 90 miles north from Ceara, Brazil, in south latitude 12000^{\prime} and west longitnde $37^{\circ} 17^{\prime}$.

Seguenzia trispinosa Watson.
Collected at Station 2754, in s50 fathoms, ooze, east from Tobago, and at Stations 2751 and 2760 , with the preceding species.

Fanily VERMETID.E.
Genus VERMETUS Mörch.
Snbgenus PETALOCONCHUS Lea.
Petaloconchus irregularis Orbiguy.
Abundant at the Abrolhos Islands, Brazil.
Family LITORINID.E.
Genus LITORINA Ferussac.
Scetion MFLAB.APIE Muhffeldt.
Litorina angulifera Lanarck.
Almondant and large, and rather pale colored, at the Abrolhos Islands. Of the two series of color markings those comected with the spinal strice were the least conspicnous.

Family LITIOPIDA.

Genus ALABA A. Adams.

Alaba conoidea Dall.
Aluba conviden Dall, List of Marine Mollusks, etc., Bull. U. S. Nat. Mus., No. 37, p. 146, 188%
Shell small, conical, subtranslucent white, with six whorls; apex rather blunt; nucleus not differentiated; whorls polished, sculptured only with obscure iucremental lines, suture distinct, a little channeled; sides of the spire flattened, th? wholls hardiy rounded; the base almost earinate or bluntly rounded; aperture lozenge shaped, angulated ac the end of the carina, pointeil bluntly iu front and behind; body and pillar somewhat callons ; operculum normal ; the shell has but one or two not very conspicuons varices, all on the last whorl. Maximum lougitude 3.3; diameter 1.6^{mm}.

HAB.-Station 2595 and 2596 , off Cape Hatteras, North Carolina, in 49 to 63 fathoms, sand ; Station 2612, in 52 fathoms, saud, off Cape Lookont, North Carolina; and Statiou 266 s , in 294 fathoms, gravel, off Fernandina, Florida; and by Dr. W. H. Rush, of U. S. S. Blake, on the Campeche Bank, in 200 fathoms; temperatures 46° to $75^{\circ} \mathrm{F}^{\prime}$.

Family SOLARILD.E

Genus SOLARIUM Lamarck.

Solarium bisulcatum Orbigny.
Collected at Statiou 2762 , east from Rio Janeiro, in 59 fathoms, mul. It extends northwad to the archibenthal area off Martha's Vineyard, where the young was described by Professor Verrill under the name of S. boreale.

Family RISSOID.E.

Genus BENTHONELLA Dall.

Hela Jeffress, 1870 (ex parte) not of Mïnster, 1830.
Benthonclla Dall, Bull. Mus. Comp. Zoöl., Xvin, p. D\&1, June, 1889.
In the fifth volume of his British Conchology (p. 20t, pl. 101, f. 7, 1869), Dr. Jeffirevs described a Lacuna tenella dredged by Drs. Carpenter and Thomson, in the North Atlantic, at a depth of 180 to 650 fathoms. The types are in the Jeffreys' collection now in the U. S. National Musenm. In July, 1870, in the "Anuals and Magazine of Natural History," he proposed a genus Hela for these shells, which he still retained in the vicinity of Lacuna. The name Hela, however, had been preoccapied in Crustacea for many years. In the proceedings of the Zoological Society for $18 \div 3(\mathrm{p} .110)$, he referred his genus to Cithna, a snbgenus of Fossar゙us, proposed by Arthm Adams (D. Z. S., 1863, p. 110). An examination of three species of Cithna, sent by Mr. Adams to Dr. Jeffress,
convinces me that Cithno Adams, is not a member of the family Lacunide nor allied to Fossarus, neither is the Japanese gemus the same as the Hela of Jeffreys. Indeed, ('ithna Adams, with its small pointed apex and continnous peritreme does not offer any very good characters which might separate it from Oingula or Littorinclla. Owing to the fact that several of Dr. Jeffress' species of Helu or Cithna are probably Vitrinelle, I did not at first recognize that the shells which I called Benthonella were of the same genus as those first mamed Hele, by Jeffireys. After the Blake Report was in type it suddenly occured to me that it was remarkable that IIclu did not appear in the dredgings of the Fish Commission, or the Bluke. A re-examination of Dr. Jeffreys' material revealed the fact that his original type, and also the Uitha margoritifera of Watson should be referred to Benthonella. This genus I regard as a thiu-shelled deepwater member of the Rissoide, with a blunt apex, turbinate brownish nuclear shell and a thin pancispiral operenlum. The umbilicus is always small, bounded by a more or less evident ridge or angle at the base, the shell is always thin and polished, the apertmre simple and sharp-edged, the peritreme interrupted by the body whorl, and the pillar lip arenated or passing insensibly into the rounded base. The operculum is like that of Lithoglyphus, as fignred by H. \& . 1. Adams, thin, translucent horn color, withont any process internally. The epidermis, if any exists, is so thin and close as to seem absent. The species which may be referred to Benthonella are, B. tenella (Jeffireys), B. margaritifera (Watson), B. gaza, B. Fischeri, and I3. nisonis Dall. A shell named tenclla, by Jeffreys, from the Zanclean formation of Calabria, is not Hela tenella Jeffreys, but is possibly a Benthonella. The only specimen in the Jeffreys collection is somewhat abnormal. A specimen marked Hela influta Monterosato, seems to be a Titrinella; it was dredged by Nares, in the Mediterranean, in 200 fathoms. \quad. fulva Jeffreys, from Korea (St. John), is not a Benthonella. Cithua Adamsi, cincta, carinata, and naticiformis of Jeffrers ($\mathrm{P} . ~ Z . ~ S ., ~ 1883, ~ p 1) . ~$ 111-112, pl. xx) do not belong to Benthonella nor to the original Cithne of Adams. They resemble Vitrinella as much as anything e'se.

A careful scrutiny of the specimens in the Jeffreys collection shoms that B. tenella was collected by the Poreupine in 1869 at stations 4,23 , $23 a, 36,39,40$, and 41 ; in 1870 at stations $16,17,51,54$, aud 55 . It was also dredged in the Mediterranean by Spratt and Nares in 96 to 600 fathoms. B. margaritifera (which is very like B. Fischeri, but ribbed transrersely) was obtained by the Porcupine in 1870 at stations 16, 17, 17 u , and 22 ; also in Setubal Bay and off Cape Espichel.

The three West Atlantic forms seem nuiformly larger than those from the Mediterranean and Eastern Atlantic. All the species are closely related and differ in details of form, size, and proportion rather than by more salient characters. The dried animal remains in one of the specimens of B. margaritifera together with the operenlum, and I hope later to examine the deutition of it.

Proc. N. M. $89-22$

Benthonella gaza Dail

Plate xI, Fig. 5.

Benthonella gaza Dall, Bull. Mus. Comp. Zoïl., XViII, p. 282, June, 1889.
Shell elongated, glistening opaque white, extremely thin, with two and a half larval and five later whorls. Nucleus trochiform, brown, polished, with a single carina above the periphery; other whorls full, rounded, the earlier ones marked with a few faint flexuous transverse waves, the rest with only lines of growth. The whorls are full and romuled, the suture distinet ; base full, rounded, with a small umbilicus, in front of which is reflected the thin inuer lip; aperture rounded, lip slightly reflected, not thickened. Longitude of shell, s; of last whorl, 4 ; maximuin latitude of shell, $4{ }^{\mathrm{mm}}$.

Hab.-Station 2352, west of Cuba, in 463 fathoms, coral ; also at Station 2394, betreen the delta of the Mississippi and Cedar Keys, Florida, in 420 fathoms, mud; temperature 410.8 ; Station 2751, south of St. Kitts, West Indies, in 687 fathoms, ooze; temperature $399^{\circ} 9$ F. Station 2754 , in 880 fathoms, ooze, east from Tobago; temperature 370.9 ; and Station 2760, 90 miles worth from Ceara, Brazil, in 1,019 fathoms, broken coral; temperature $39^{\circ} .4 \mathrm{~F}$.

This species may be regarded as the type. Its polished white rounded simple whorls and brown tip present an elegant appearance.

Family ADEORBIDE?

Gemus ADEORBIS Wood.
Adeorbis sincera sp. nov.
Plate xil, Fig. 2.
Shell small, depressed, white, with a deep olive epidermis, fourwhorled; nuclens not differentrated, smooth, regular; surface of shell polished. sculptured ouly by incremental lines; whorls full and regularly descending; after the first whorl nearly all specimeus Lave a flattened area in front of the sutmre, strongest in the apical whorls, where it is usually bounded in front by a sharp carina or angle on the whorl; this decreases and is nearly obsolete on the last whorl; in the same way the umbilicus is generally bounded by a well-marked angle which is visible even on the margin of the aperture, and is less prominent on the adult than in the young; other specimens have the whorls evenly romnded; umbilieus wide; aperture complete, continnous, nearly circular, except at the upper end of the outer lip where it joins the body, where there is a slight angle; young and strongly earinate specimens show angles in the margin corresponding to the earina. Maximum diameter, 3.25 ; minimum diameter, 2.5; altitude, 2.6 6^{mm}.

Hab.-Station 2668, off Fernandina, Florida, in 294 fathoms, shelly bottom ; and Station 2756 , off the Para liver, Brazil, in 391 fathoms, sand ; temperature 400.4 to $4 ; 0.3 \mathrm{~F}$.

This shell is very like Valuata sincera, thongh smaller and of an olivaceons brown when perfect. The aperture is sometimes slightly thickened inside, so it may prove to be a Mïlleria. I have not seen the operculum and the generic reference is merely provisional.

I regard the genus Adeorbis as closely related to Skenca, with which it may possibly be necessary to mite it. But though the type is Rissoid, doubtless numerons species belonging to the ('yclostrematide' or other Trochoid groups may have been referved to it in the absence of the soft parts.

> Family UALIPTR.EID.E.

Gemin Mitrularia sthumather.
Mitrularia equestris Liune.
Collected at the Abrolhos Islands, Brazil.

> Geuus CREPIDULA Limarck.
> Crepidula (Sandalium) aculeata Gmelin.

Collected at Station 2762, east of Pio Janeiro, in 59 fathoms; Stations 2764 and 2765 , in 10 to 12 fathoms, off the Rio de la P'lata.

> Family CAPULID.E.
> Genns CAPULUS Montfort.
> Capulus incurvatus Gmeliu.

Collected at the Abrolhos Islands, Brazil.

> Family AMaltheid.e.

> Genus AMALTHEA Schumacher.
> Amalthea effodiens Curpenter.

Collected at Station 2758,90 miles sontheast from Cape San Roque, Brazil, in 20 fathoms, gravel.

Amalthea antiquata Lınıé.
Amalthea costellata Carpenter.
The precerling two species were found at the Abrolhos Islands, near Porto Allegre, North Brazil.

Family NATLCLD.E.

Genms NATICA Lamarek.
Natica camrena Lamarck.
Collected at Station 2762 , east from Rio Janciro, in 5! fathoms, mud, and Station 2765 , oft the Rio de la Plata, in $10 . \frac{1}{2}$ fathoms; temperature $57^{\circ} .1 \mathrm{~F}$.

Obtained at Station 2751, in 687 fathoms, ooze, sonth of St. Kitts, West Indies. Probably adventitions from shallower water.

Subgeuns LUNATIA Gray.
Lunatia fringilla Dall.
Natica fringilht Dall, Bull. Mus. Comp. Zö̈l., $\mathrm{xX}, \mathrm{p}, 93$, Soptember, 1 -81.
Lunutia fringillu Dall, op. cit., ximi, p. 295, Pl. xxi, Fig. 12, 1889.
Collectel at Station 2754, east of Tobago, in 880 fathoms, ooze, and Station 2756 , off the Para River, Brazil, in 391 fathoms, saud; temperatures 370.9 aut $40^{\circ} .4 \mathrm{~F}$.

Superfamily DOCOGLOSSA.
Family ACMLEID.E.
Genus ACM 届A Eschscholtz。
Acmæa melanoleuca Gmelin.
Collected abmudantly at the Abrolhos Islands, near Porto Allegre, North Brazil. It extends northward to Florida.

```
superfamily RHIPIDOGLOSSA.
```

Family COCCULINII E.
Gemus COCCULINA Dall.

Cocculina Beanii Dall.

Collected at Station 2751, east from Tohago, in SSO fathoms, ooze; temperature 370.9 F . Tectura adunca Jeffreys, as far as one can tell from an exammation of the shell alone, is a synonym of this species.

Cocculina pocillum sp. nov.
Shell small, stont, short, high, arched in front, bluish white, with a dark brown epidermis; ends evenly rounded, sides nearly straight on the margin; sculpture of numerons larger olscure radii, each pair with about three finer intercalary oues, slightly scalloped by the rery fine slightly raised incremental lines; over all where the surface is perfect is a tine, dust like, microscopic grannation; margin entire; apex projecting backward, decursed in the posterior thith of the length; the summit arched slightly above it ; interior bluish white, polished; maximum longitude, 5.5 ; latitude, 3.7 ; altitude, 3.5 ; apex in front of hinder mangin, $1.5^{\text {mum }}$.

Hab.-With the preceding species.
This species is not much likeany of those prerionsly described. Two male specimens were taken, each with a well marked rerge exteuding from the right tentacle. It has mo posterior epipodial filaments, and therefore should be placed in the section or subgenus Coccopygia.

Fimily TURIBINII) E.

Genus ASTRALIUM Link.
Astralium americanum Gmelin.
Collected at the Abrolhos Islands, Brazil, and extending thence northward to Florida.

Family TRO(SHID.E.
Genus OMPHALIUS Philippi.
Omphalius fasciatus Born. (var.)
Collected at the $\mathbf{A b r o l h o s ~ I s l a n d s . ~}$

Gemus CANTHARIDUS Montfort.

Subgenus IlALISTYLUS Dall.
Shell small, eylindrical, holostomate, polychromatic; opereulum multispiral, coriaceots; dental formulal $\frac{1}{4+t+r}$; type, I. columna Dall.

This gronp) differs from Leiopyrga in its holostomate aperture and absence of spiral sculpture.

Halistylus columna sp. nov.
Plate ix, Fig. 7.
Shell small, subeylindrical, htmt-tipped, polished; yellow, brown, salmon-colored, bluish gray, or streaked or banded with these colors; seven whorled; apex flattish; uncleus not differentiated, small; whorls, after the second, nearly equal in diameter; suture much appressed, the whorl somewhat constricted in front of it ; sculpture only of faint incremental lines; base rounded; :uperture rounded ovate, slightly oblique; outer lip continnous with the pillar, which is raised, arehed in harmony with the lip, but not reflected; bo umbilicus; lip simple, hardly thickened; a little callus on the body and in the posterior angle between the lip and body; throat simple, very slightly pearly ; operculum circular, externally shaggy, with many whorls; animal with long slender tentades; the eyes black, on separate rather long peduncles; epipodial line indicated by four or six short stont papille; foot short and broad; muzzle rather large and long, a little indented in the middle line; median and admedian teeth simple, with narrow straight stems, and simple, wide, mushroom-like cusps; uncini numerons, filiform ; admedian teeth four, the onter ones the larger; stems and bases of the middle part of the radula so small and thin as to be difficult to distingnish; maximum longitude of shell, 5.8 ; maximum latitude, 1.9 ; longitule of aperture, 1.2^{mm}.

Нав.-Station 2762, off Rio Janciro, in 59 fathoms, mud; temperature $57^{\circ} \mathrm{F}$. ; Stations 2764 and $276 \mathrm{~m}^{2}$, ofl the Rio de la Plata, in 10 to 12 fathoms, siad.

This singular little shell appears to be the only representatice on the shores of America of the Australasian Bankiria. The teutacles did not appear ciliated, nor could I observe any cephalic lappets between them. The difficulties of observation, however, are so great with so minute an object that their absence can not be dogmatically affirmed merely from an examination of alcoholic specimens.

Genus GAZA Watson.
Gaza Watson, Jour. Linn. Soc., x7v, p. 601, 1879; Challenger Gastr., p.93, 18-5. Type G. dedala Watson.

Gaza Rathbuni Dall.
Plate vir, Fig. 4.
Gaza Rathbuni Dall, Bull. Mus. Comp. Zö̈l., XVinf, p. 354, June, 1839.
This species differs from its nearest ally among those already known (\boldsymbol{f}. superba Dall) by being more depressed, with stronger spiral grooviug, a slightly smaller umbiliens, and more flattened orer the sutures. The single specimen obtained has not yet formed the reflected lip and callus over the umbilicus. Maximum altitude of shell, 24 ; maximum latitude, 38^{mm}.

Operculum of about seren whorls, thin and polished, slightls centrally concare, with a narrow thinner band marginating the coil. It has a maximum diameter of 16^{mm}.

Hab.-Station 2818, near the Galapagos Islands, in 392 fathoms, sand; bottom temperature $44^{\circ} \mathrm{F}$.

As the specimen of this fine species is not quite mature it has been figured in a position which will enable it to be compared with G. superba and other species of the genus. The soft parts recall those of G. superba Dall, but the muzzle seems shorter and there are seren slender, rather long epipodial filameuts on the right side, instead of fire as in G. superba. The intestine is crammed with toraminifera. The pointed tail-end of the foot, in the contracted animal, is turned directly down and in, so that the angles of the fold stand out and at first give the impression that the foot is bifid, behind.

Subgenus CALLOGAZA Dall.
Callogaza Watsoni Dall.
C. Watsoni Dall, Bull. Mus. Comp. Zö̈l., ix, p. 50, 1-31; xviri, p. 35̄6; Pl. xxir, Figs. т, $7 \mu, 1<89$.
Hab.-Autilles, between Florida Strait and Barbados, in S4 to 640 fathoms, Blake expedition. Station 2756. in 391 fathoms, sand, off the Para Rirer, Brazil ; temperature $400^{\circ} .4 \mathrm{~F}$.

This extends the known range sonthward about 1,000 miles.

Calliostoma platinum sp. nov.
Plate VII, Fig. 2.
Shell large, thin, polished, iridescent white, with seven whorls beside the nuclens; nucleus minute, lost; subsequent whorls slightly flattened behind the periphers, full aud rounded on the base ; longitudinal sculp. ture of obscure spiral lines behind the periphery and somewhat stronger flattish threads, separated by shallow grooves, on the base; at the periphery is a single prominent thread, in mediately in front of which is the suture, the succeediug whorl being appressed against the thread; the single specimeu obtained has a second prominent thead abont two milimeters behind the peripheral one on the last whorl, but it is probable that the development of this thread was stimnlated by an injury of which traces are plainly visible just before the second thread begins ; base full and rounded; aperture rounded quadrate; the outer lip thin and sharp, its plane oblique and slightly flexnous; body with a very faiut wash of callus; pillar slender, pearly, slightly arched, very little reflected, simple; interior polished, iridescent, withont lirie; the external sculpture faintly perceptible owing to the tennity of the shell. Maximum longitude of shell, 32 ; maximum latitude, 20^{mm}.

Hab.-Station 2839, near the Santa Barbara Islands, California, in 414 fathoms, sand; with Turcicula Bairdii.

The operculum of this species has abont fourteen very narrow whorls, is polished internally and somewhat rongh externally from the projecting margin of the coils. It bears abont the same proportion to the aperture as in the shallow water species. The shell itself is less attractive than most of the group, but indicates that some individnals of the species may have a delicate pale iridescence. The exterior of this specimen. shows little pearliness and is chiefly of a somewhat livid white, like the eye of a boiled fish.

The soft parts are whitish; the head and the sides of the foot below the epipodial line are profnsely granulose; among the granules rise pointed larger papille, also very granulose, so as to appear almost arborescent. The epipodial line projects moderately, with a finely fringed edge. There are two moderate sized filaments in front of the operculum and two smaller ones beneath it. The foot is long, rather narrow, double-edged, and somewhat anriculate in front, with a wide transrersely rugose median channel behind the opereulum about the tail. The oral surface is granulous, the corners are a little produced. The tentacles are long aud slender, the eyes very large and black. There are no palmettes. The gill resembles that of Turcicula, but is less triangular as a whole. The mantle margin is finely papillose. The jaws are small and not remarkable. The dentition was hot examined.

Trochus teniatus Weod, Ind. Test. Suppl., Pl. v, Fig. 12, 18:8; Phil. Mon., Trochida, p. 251, t. 37, Fig. 12.

Trochus bicolor Lesson; Vos. Coq., p. 345, t. 16, f. 3.
Hab.-Falkland Islands (Philippi). Station 2770, in 58 fathoms, sand, off Spring Bay, east coast of Patagonia, and also at Station 2771, off Point Gallegos, in 50 fathoms, sand; temperature 49 . 4 F .

This species is referred to Photimula by H. む A. Adams, but appears to be simply a smooth Calliostoma. There is no umbilical callus as in Photinula corulescens, which was also obtained by the Albatross at Stations 2770 and 2771.

Calliostoma Coppingeri Smith.

Plate NII, Fig. 4.
Trochus (Ziziphinus) Coppangeri E. A. Smith, Ann. Mag. Nat. Hist., Ser. 5, Vol. vi, No. 34, p. 320, तet., $18 \div 0$.
Shell glistening, small, flattened at the periphery, seven-whorled; color pale waxen white, with pinkish nacre; the exterior on the spiral sculpture more or less articulated, with elongated brown spots; these are sometimes wholly absent, but disappear last ou the cariual threads; nucleus white, small, snbglobular, polished, not sculptured; early whorls spirally threaded, the two threads next in front of the suture grannlous; these and all the others become flattened out and obsolete on the last whorl or two of the adnlt in most cases, but, are exceptionally retained; the periphery of the whorls is angulated but not keeled; in front of it is another angle on which the suture is laid; the space between is flattened and nearly rertical, becoming more inclined on the last whorl; transverse scu!pture of inconspicuons incremental lines, rarely emphasized; base moderately convex; the umbilical region impressed and surrounded by three or four coarse, often articulated spiral threads; outer lips thin, sharp, rounding to the colnmella without noticeable intermption; pillar somewhat arched, pearly, rather strong; body with a faint wash of callus; operculnm amber-colored, thin, multispiral. Maximum altitude of shell, 10 ; diameter, 11 mm .

Hab.-Stations 2765, 2766, in 10 fathoms, sand, off the Rio de la Plata, and 276 s , off Cape Delgado, in 43 fathoms, sand.

This shell was at first supposed to be new, but it is probably the unfigured species described by Mr. Smith from ' 25 fathoms off the mouth of the Rio de la Plata in latitude $36^{\circ} 4 \sigma^{\prime} \mathrm{S}$.

This species has much such a surface as C. yucatecanum Dall, which, however, is umbilicated. There is a small swelling; hardly a tooth, at the end of the pillar. Its colors look washed ont; otherwise they also recall those of U. yucutecanum. There are no lire in the throat. Uecasional specimens have the spiral senpture emphasized; in such cases the fattening of the periphery becomes less prominent. Now and then
one of these strongly sculptured forms has atl the threads behind the periphery undulated or gramulons, forming a variety which may be called C. Coppinyeri var. cymatum.

Calliostoma riöensis sp. nov.
Plate xif, Fig, 5.
Shell of a waxen color, nearly obscured by clonds, flammules, aind articulations of lighter or deeper flesh color; whork eight, somewhat flattened above, angulated around the base, spirall, gramulosely thearled; apex pointed; nucleus small, white, dextral ; spiral seulpture of alternately larger and smaller threads, of which at the beginning of the last whorl there are six each between the sutures; the paired threal on which the suture runs and the next primary behind it are distinctly wider than the other primaries ; all are set with close roundel gramoles, which are only moderately prominent; the interspaces are about as wide as the secondary threads; the base has about a dozen rather strong spirals, with subequal interspaces, but no secondary finer threads; transverse seulpture ouly of lines of growth ; the whorls and base are only slightly convex ; aperture subruadrate, the onter lip sharp; pillar stont, short, a little angulated at its anterior point, pearly, and hardly reflected over the imperforate mmbilical region. Maximum altitude of shell, 15; maximum diameter of base, 14^{mm}.

IIab.-Rio Janeiro, on the Eucuados Islets, U. S. Exploring Experdition. Albutross Expedition at Station 2762, off Rio, in 59 fathoms, mul; temp rature 57°; Stations 2764 and 765 , off Lio la Plata, in 10 to 12 fathoms, sand.

This species recalls C. jucundum Gould, from New Zealand, and C. euglyptum Adams, from Florida, but is sufficiently distinet from either. It is less elegantly painted than C. jucundum, and the same may be said of its relation to the finer specimens of C. euglyptum, which also has its whorls more rombded and its flammules more regular.
C. riomsis is very apt to be overgrown with Polyzoa; few of the specimens are free from them. The operenfom and soft parts are as usual in the group.

Genns MARGARITA Leach.
Snbgenus TURCICULA Dall.
Turcicula Dall, Bull. Mus. Comp. Zoïl., rx, p. 42, 1\$ <1.
This group is remarkable among Trochide for its large size and thin shell with delicate green epidermis and reflectel peristome like a land shell. The type of the group is small compared with the others now known, but has the characteristic surface sculpture and form, thongh no perfectly adnlt and complete specimen has yet come to hand. The voyage of the Albatross has given us two tine species from the Pacific belonging to this group, which are perhaps the finest mollusks collected during the voyage.

Plate Vir, Fig. 3.
Turcicula Bairdii Dall, Bull. Mus. Comp. Zoöl., xvili, pp. 376-378, June, 1889.
Shell large, turbinate, elevated, thin, inflated, with four and a half or five whorls, of which the last is much the largest; surface apt to oe eroded, but where perfect covered with an extremely thin dense vernicose pale apple-green epidermis; whorls intlated; suture deep, not channeled; apex moderately pointed; spiral sculpture of (1) mumerous fine faint rather irregular scratches or impressed lines; (2) sparse slightly elevated revolving bauds which are usually more or less nodulons, the nodules when prominent being sharp and laterally flattened as if pinched up; of these there are, on the upper whorls usnally three series between the sutures, of which one at the periphery is the most promiuent and persistent, the next one behind it, half way between the periphery and the suture, being the least marked; on the base the cinguli are six or seven in number, becoming narrower toward the axis, smaller than those behind the suture, with smaller, less prominent, rounder and more numerons nodules; there is some variation in number and strength of all the cinguli, but that on the periphery is the most prominent and constant; the whorls are particularly round and intlated above and below, so that the outline of the aperture is often nearly circular ; interior of the aperture brilliantly pearly, a thin wash of callus ou the body; the outer lip very slightly thickened and distinctly reflected in the adult; pillar thin, simple, arching romndly into the curve of the base withontany interruption, angle, or tooth; axis imperforate the external sculpture showing throngh the thin shell. Altitude 50; maximum diameter 42^{mm}. Maximum diameter of operculum 18^{mm}, ${ }^{\circ}$ with abont twelve whorls. The operculum is externally polisherl, smooth and deeply concave ; the inner side presents a minute central rounded elevated point; the margin is very thu but entire.

Hab.-Station 2839, off San Clemente Island, California, in 414 fathoms, sand; bottom temperature not registered.

Soft parts.-The sides of the foot below the epipodial line are granulous; above the line the surface is rather smooth. Much of the surface is apt to be covered with a layer of blackish or olivaceous substance, like solidified mucus or paint, which seems to belong to the animal, yet is wholly external to the enticle. The foot is broal, not very long, bluntly pointed behind, the front elge straight, double, the lateral angles pointed; the upper layer of the edge is smooth and turgid in most of the specimens; it is not indented in the median line.

The muzzle is stout, circularly wrinkled, a little expanded at the disk; the oral disk is not marginated ; its surface is finely granulose; it is angulated at its lower outer corners and medially indented below. There are no oral palps or tactile appendages.

The cephalie tentacles, for the size of the animal, are small and short. At their inner bases are small "palmettes," or cephalic epipodial fringes, not quite meeting in the middle line. They are rounded, with papillose edges. At the outer bases of the teutacles are the eyes, large, oliviform, monted on short pedicels. The pigmented portion itself is ovoid aml not hemispherical. In some specimens the pigment seems to be more extensive on the under side, in others the reverse, and still other's have it equally distributed. A lens and aqueons hmor are distinctly obsersable. At the right side, behind and on a level with the eye, is a short tnbular rerge. The anterior epipodial side lappet does not appear to be modified into a seminal coulnit, as in Margarita infundibulum Wiatson. These lappets are nearly symmetrical. Their bases are turnet up a little on each side behind the eyes and the lappets are rather wide. They extend backward about two-thirds of the way to the operculum, with a finely papillose edge. Then comes a single tentacular filament, less than half as long as a cephatic tentacle. There is another streteh of edge fringed with only small papilla; ; ander the opercalnm there are three long filaments, of which the posterior is longest. Behind the operculnm the epipodial lines of the two sides approach each other :and bound a median furror, coarsely transversely ridged (as in Pleuroto. mariat, which exteuds to the end of the foot.

The mantle edge is smooth or very sparsely papillate, slightly thickened. The free end of the intestine projects on the right side over the neek, with its termination constricted by a sphincter, and then expanted into a cup-shaped circular foramen. On the left sifle is the gill, consisting of a ceutral, somewhat muscular, ensiform basement, from which depend two sets of elongate triangular lamelle, separated by a narrow ridge. The left-hand set are slightly the longer. Most of the gill is free. Its distal end is pointed and the lamellie hang side by side, with the ridge between the two series, as in Nucula. The intestine takes a curve to the left side, where the renal gland is visible between it and the gill. I observed no osphradium.

The mouth is small. A short distance behind it is a deep radular diverticulum. The jaws are small, triangular, and dark brown. The gullet opeus almost directly into an elongate, large, longitndinally wrinkled stomach. Behind it the rery large intestine, with longitudinally striated walls, extends backward about half a whorl, then turns upward and forward for a third of a whorl ; then back again upou itself about the samedistance; then forward to its anal termination, above described.

The liver and semiual gland appear to resemble those of ordinary Trochids.
The operculum is amber-colored, polished, thin, and centrally depressed. It has about a dozen whorls. The opercular pad is oroid and rather small.

The radula is quite small and the anterior part dark brown. The
intestine, in all the specimens, is crammed with a greenish mul, consisting of disintegrated foraminifera.

The dentition recalls that of Calliostoma, Solariella, Margarita, etc., and presents nothing very characteristic.

The central tooth has a broad thin base, subrectangular, and a little wider at the anterior corners. The stem of the cusp and the ensp are narrow. The latter is simple, rather small, short, and recurved. It is not denticnlate. There are three or four arlmedian or lateral teeth, rather long, with small bases, rather broad, simple, moderately curved bownish cusps. There are abont twenty-five uncini, half of which spring from lozenge-shaped bases, looking like a pavement; are long, narrow, slemler, moderately eurved, with spatuliform tips. One edge of these tips is microscopically serrate, and below the serrate part, on the same side, is a single larger denticle, standing out like a short tlumb.

The external meini are thin, flat, wide, and hardly curved. Their distal embs are llat and broad, with the edge simple and entire: These teeth gradually diminish in size and width, as usual in Trochidre. The formula wonld be $25+3+\frac{1}{1}+3+25$, or very nearly that; but time has been wanting in which to undertake the laborious task of an exact ennmeration of these minnte and tangled objects, of which the general features have just been recorded.

All the specimens of Turcicula previously obtained were incomplete and deprived of epidermis.

The capture of this aut the following species, besides adding to onr catalognes two of the finest rleep sea mollnsks known, has enabled me to fully describe the characters of the gronp) and determine its place in the system of classification.

Turcicula Macdonaldi sp. nov.
Plate Vil, Fig. 7.
Shell vers arge, thin, elevated, with abont six whorls, flattened, and appressed above and romnded below. It differs from T. Bairdii in the proportionally narrower cinguli of which only that at the periphery is nodulons, in the more numerous (nine to ten) sharper and more elevated basal cingnli, in the flatter posterior surface of the whorl and its being appressed at the suture, in its duller more olivaceons epidermis, more angnlated and less reflected outer lip. Althoagh living it was a good deal eroded, especially at the tip. Altitude of decollate shell, 75 ; maximum diameter, 60 mm . The opernum has nine whorls, is of the same shape as in the preceding species, but of a darker brown, with a maximum diameter of 29^{mm}.

Hab.-Station 2792 , off Manta, Ecuador, in 401 fathoms, mud; loottom temperature, 430 F .

The single specimen of this magnificent shell contained the animal, which does not appear to differ materially from the T. Bairdii. It is
named in Loino of Col. Marshall Mc:Donain, the present U. S. Fish Com. missioner, under whose direction the vogage was carried out.

In this species the "palmettes" or epipodial lobes between the tentacles are proportionally larger than in T. Bairdii and have smonth and not fringed edges. The verge is similar but mounted on an onion-shaped expanded base. There is one very short, small, epipodial filament in front of the operculum on each side; under the operculum are two very small, instead of three long tilaments as in T. Buirdii, on each side. The other features are essentially as in T'. Buirdio. The remal organ is very extensive, with a corrugated surface, and seems to empty into the rectum shortly before the latter becomes attached to the surface of the mantle.

Subgenus SOLARIELLA A. Adams.
Solariella infundibulum Watson.
Plate IX, Fig. 3.
Trochus (Margarita) infundibulum Watson, Challenger Gastr., p. 84, Pl. v, Fig. 5 ; Dall, Nautilus, p. 2, May, 1889; Blake Gastr., p. 3-0), Junc, 18*9.
The presence of a rerge, or intromittent male organ, has hitherto, among the Rhipidoglossate Mollusks, been recorded only in Seritiuct (Claparèle) and certan Limpets. The organ as it exists in Neritimuand Nerita is so short and obscure that its function and even its existence has been called in question. When I showed its existeuce in the rather anomalons Addisonia paradoxa and Cocculina spinigora, curions deep sea limpets, it was questioned whether they were not peculiarly modified Taenioglossa.

Since then, in several deep-sea mollusks, such as Rimula, Murgaritu, and others indisputably belonging to the Rhipidoglossa, I have found at well-developed verge; and there is little doubt that the ancestors of this group, as well as of the Tonioglosse, were so provided, and that some of these deep sea forms have retained the organ now generally obsolete in their shallow-water congeners. In combination with this survival, one of the species, Trochus infundibulum Watson, offers a singularand very iuteresting special modification of the anterior portion of the epipodimm on the right side, which appears worthy of particular attention.

The soft parts of this species afford several notes of interest. The external parts, except the eyes, are white. The foot is wide, straight, and double-edged in front, and, as far as one can judge from specimens contrated in alcohol, must have been somewhat pointed or produced at its anterior corners in life. The sides of the foot are nearly smooth below the epipodial line.

The muzzle is small and slender at its proximal end, enlarged and transversely semi-lunar at its distal extremity. The oral surface of the muzzle is smooth, the month very small; the oral disk is flat and produced on either side into a thin linguiform lappet, with simple and entire edge. These lappets are remarkably long, their ends realing as far as the ends of the true tentacles, and serve as tactile organs, like
the oral tentacles of the Lepetide, or the much smaller lappet of Acmac. When not feeding or seekiug food, these lappets would seem to be applied to the sides of the foot below the epipodinm. The oral disk is entire, but is slightly indented in the median line below a furrow running up toward the month.

The cephalic tentacles are very stont and large, very elongate, conical, with moderately pointed tips. They are situated above, and not, as in most Trochide. on either side of the muzzle. Their inner bases are connate; and there is no inter-tentacular "veil," or any tubercular traces thereof.

The eyes are large, strongly pigmented, ovoid, and sessile on the outer bases of the tentacles, or perhaps I should say, just by the outer bases. They are not pedunculated or elevated on pedicels in any of the specimens examined, and I am quite confident that this is not caused by contraction due to alcohol, but is normal to the species.

The epipodial apparatus is complicated, and exhibits a certain amount of variation between different individuals in the sitnation and number of its processes. In the males, it is subjected to a remarkable modification for sexual purposes. The epipodium begins immediately behind the eye and a trifle below it. In the females it is produced into a large broadly linguiform process, half as long as the cephalic tentacles and fringed with close-set, uniform, small, pointed papillee or filaments. This process exists in the males on the left side. The posterior margin theu curres in toward the side of the foot; it becomes quite narrow and shows two lateral tentacles of moderate size ; then a racant space; then at the front end of the operculum two or three filaments, small, but larger than any in the vacant space; then another but larger one; and finally another, which is behind the middle of the operculum, and is the last on that side. The epipodial line is continned to the end of the foct, the dorsal surface above it being trausversely rugose and with a linear median furrow. On the other (right) side we find a small, a large, two subequal small, and another large filament, followed by a slight gap, and theu a still larger tentacular process. The tlap, which corresponds to the fringed process on the left side, is remarkably modified in the male.

Behind and close to the right ese is a small tubular, longitudinally striate, cylindrical rerge, not exceeding (in alcohol) two millimeters in length. Below it the epipodial flap is enormously produced, aud its frout edge is rolled upward and backward upon itself, forming a tube into the proximal opening of which the end of the verge may project.

The flap is rolled so that it makes nearly two layers, and thus a very capable eylinder, which, when unrolled and released, will immediately coil itself up again. This cylinder is of subequal diameter throughout, and is as long as, and somewhat stonter than, the cephalic tentacles. Externally, near its base, it is nearly smooth ; further ont, it is spirally striate; near its extremity, it becomes thicker and rather deeply ex-
ternally grooved lougitudinally, with short, even, close-set, slightly spiral grooves. The opening at the distal end is fringed with short, equal papillæ, each one corresponding to the thickened monerpace between two of the groores. These raised folds or interspaces are also finely transversely striate. At the base of the cylinder the epipodium extends backward to the first lateral filament, and the margin of this part is perfectly entire and simple, showing neither fringe nor graunlation. The object of this apparatus is self-evident. The cylinder serves as aconduit for the seminal fluid ejected from the rerge. Whether it may be employed in an actual copulatiou is doubtful ; it may merely serve to spread the seminal matter over the eggs as they are deposited by the female. I am not aware that anything of this sort has been observed in auy other gastropod up to the present time.

The edge of the mantle is smooth, entire, and slightly thickened. Within the nuchal chamber the anus is visible on the right side. The end of the intestine for a cousiderable distance is free from the mantle and projects like a tentacle. The termination is slightly constrieted, then eularged into a cup or trumpet-shaped ending, which nearly reaches the mantle-edge.

The intestine itself, after leaving the stomach, is much convoluted, but in the main rises and is brought forward uearly to the mantle edge above the stomach; then turus back and is carried far into the viseeral coil before it is again brought forward and terminated as above described. The food consists of Foraminifera.

The gill is free, except at its base, and consists of a very elongate-triangular foundation, from which depend triangular lamellie without a raphe and widest at their bases. These grow larger proximally.

The opereulum is thin, polished, amber-colored, centrally depressed, haviug a central projection or mipple on its muder side, and consists of about four wherls.

The speeimen affording the above notes has been identified with Mr. Watson's type specimen, and is now deposited with it in the British Museum.

The diagram upon Plate IX (Fig. 3) illustrates the features described, though crudely drawn. The fringe on the left anterior epipodial lappet is too coarse and irregular. The animal is represented as if crawling. The central obliquely lined area represents in sectiou the portion which would extend into the shell, which latter has been omitted to show the parts more clearly. In front on the right, behind the cye, is seen the rerge, behind that the distal free end of the intestine. The posterior epipodial filaments may be traced through the operenlum.
This speeies was obtained by the Chellenger off Perwambuco and also in the North Atlantic. It was dredged in some numbers by the Allowtross at Station 2723,125 miles off the coast of the United States, in north latitude $36^{\circ} 4 \bar{\sigma}^{\prime}$, in 165.5 fathoms. An allied speries, S. Otto: Philippi, seems to be without this curions sexual modification.

I am aware that this examination does not agree in all respects with the account of Dr. Pelseneer in the Challonger Report on the Anatomy of Mollusks, but that account appears to have been somewhat hastily prepared, while the figure of the animal is eridently a diagram and not a portrait. There is, of course, a possibility that some error of identifieation may have occurred, and that the animal sent to Dr. Pelseueer was not that of the S. infundibulum. The specimen here deseribed has been compared with the original type of infundibutum, and I suppose there cau be no question as to its absolute identity specifically.

Solariella amabilis Jeffreys.
Collected at Station 2754 , east from Tobago, in 880 fathoms, ooze.
Solariella clavata Watson.
With the preceding species, and also at Station 2751, in 687 fathoms. ooze, sonth of St. Kitts.

Solariella oxybasis sip nov.
Plate xir, Fig. 6.
Shell closely related to S. Ottoi, var. regalis V. \& S., from which it differs most obviously by its more acnte and elerated spire, smaller umbilicus, angular periphers, and aperture angulated in front by the juncture of the pillar with the end of the umbilical carina; shell thin, pearly, with a pale, thin epidermis and six (or more) whorls without the nucleus; nucleus lost; spire acute, the last whorl enlarging disproportionately; spiral sculpture of, on the spire, three revolving threads, the most anterior strongest and peripheral, the middte one last erident; the base has six subequal, stroug, grauular threads and two smaller ones, the latter just within the umbiliens; transverse sculpture of, on the last whorl, about eighteen sharp radii, extending to the periphery and forming sharp nodules at the intersections of the spirals; the nodules ou the peripheral spiral are the most prominent and are almost spinose on the last whorl; beside this the whole shell is coverell with a fine, silky, transrerse, slightly irregular striation; suture distinct, running on the first basal spiral, not chameled; umbilicus very narrow, its margin subangulose; aperture quadrate, subangulate at the periphers, in front, behind, and at the junction of the pillar with the body; body with a wash of pearl; margin continnons with the pillar; sharp, thin, reflecting the sculpture; pillar slightly arched, thiu, reHected a little behind; base full and rounded, produced in the middle near the umbilicus; altitude 13.5 ; maximum diameter 12.5 ; minimum diameter 10^{mm}.

Hab.-Station 2839, in 414 fathoms, sand, off the Santa Barbara Islands, California.

The soft parts recall those of S. Ottoi Phil. This species belongs to the group represented by S. Ottoi, S. infindibulum, etc., but seems dif-
ferent from either of them. The st:ulpture, though more spinose, and the form of the aperture recall Watson's figure of his Bembix rola in the Challenger report (Gastr., Pl. vir, Fig. 13), which, however, has the details of sculpture differently arranged. I should suspect from this that Bembix would include this particular group of Solariella, all of which have the peculiar silky surface and the same general type of sculpture. The size and carination of the umbilicus, and consequently the form of the aperture, are variable factors in this group of shells.

Trochus alwince Lischke has been referred to Bembix, but 1 can see no reason, from the description and excellent figures, why it should be separated from Calliostoma. T. argenteo-nitens of the same author is much like Watson's Bembix as was pointed out by him, though doubtless specificaliy distinct.

Apropos of Bembix, the name was given long since by De Koninck to a remarkable cretaceous land shell like a subspherical decollate Cylindrella; the type was examined by me very lately in the Museam of Comparative Zoology at Cambridge, Massachasetts. I have not, so far, had an opportunity of lookiug up the reference to the description, but according to Fischer (Man. conchyl. p. 827) the name was used and the shell figured in 1861 by Ryckholt. In the form Bembyx the name was used by Fabricius for Hymenoptera in 1775, who also printed or misprinted it Bembex. It would seem as if the name Bembix, as applied by my friend Watson, must be giren up. This, however, is of less importance, as the characters given for the group are not sufficient to distinguish it from Solariella, or even possibly Turcicula. That it may prove, when we know the soft parts, to be distinct, is quite possible, but as yet the characters gireu for separating it from such species as Solariella infundibulum and its allies do not seem very weighty.

Solariella actinophora sp. nov.

Plate xir, Figs. 8, 11.
Shell with a prominent pointell apex, but generally depressed, pearly, with a pale greenish epidermis and six whorls; nucleus giassy, polished, swollen, and slightly tilted; spiral sculpture on the spire of three sharp narrow elevated threads, a finely granular or almost smooth peripheral keel or thread on which the suture runs: on the base three similar less prominent threads, on the anterior of which the pillar lip revolves around the umbilicus, and lastly a very sharp keel, with many strong, sbarp nodules, carinating the umbilicus; transverse sculpture on the spire of numerous sharp, elevated, narrow radii, which reach the second spiral counting forward from the suture nodulating both; some of the radii appear to reach the third spiral, but most of them do not, and the nodulations on the third usually alternate with those on the second thread; the nodules are small and pyramidal, the rectangles formed by the reticulations are flattened; beside the primary radii numerous smaller ones start from the suture between the primaries, but rarely

Proc. N. M. S9-23
extend beyond the first spiral, except on the last whorl, where they disappear toward the periphery; these secondaries are elevated and sublamellose, very regularly spacel, and re-appear on the base within the two anterior spirals, then overrun the carina and ascend the umbilieus in a vertical direction; whorls full and rounded, except as modified by the sculpture; surface polished; suture deep but not channeled; apical part of the spire rather pointed; base full, angulated at the umbilicus, which is large and deep, with nearly vertical, scalar sides; aperture wide, outer lip rounded, thin, sharp; base angulated by the umbilical carina, strietly continuous with the pillar and outer lip; pillar thin, sharp, not reflected, a little concave above the middle, not anywhere thickened; body without callus; maximum diameter of shell, 9 ; minimum diameter, 7.25 ; altitude, 7.25^{mmm}.

Hab.-Station 2751, sonth of St. Kitts, in 687 fathoms, ooze; Station 2754, east from Tobago, in 880 fathoms; and Station 2760, 90 miles north of Ceara, in 1,019 fathoms, broken coral; temperatures 370.9 to

This is nearest S. cegleis Watson, which is more conical and has a different sculpture, and especially a much more funicular umbilicus. S. actinophora is a larger shell than S. cegleis, and attaius larger dimensions than are here given, judging from fragments among the dredgings.

Genus BASILISSA Watsou.
Basilissa alta Watson.
Collected with the last species at Stations 2751,2754 , and 2760 .
Family DELPHINULIDA.
Genus LIOTIA Gray.
Liotia Riisii Dunker.
Collected at Station 2758, 90 miles sontheast from Cape San Roque, in 20 fathoms, shelly bottom.

Family CYCLOSTREMATIDA.

Geuus CYCLOSTREMA Marryat.
Cyclostrema cistronium Dall.
Plate xi, Fig. 11.
Cyclostrema cistronium Dall, Bull. Mus. Comp. Zö̈l, xvif, p. 394, June, 1889.
Shell small, white, with a polished nucleus, one and a half rounded and as many more carinated whorls; spire depressed; radiating senlpture of fine, close, flexnons threads, which appear chiefly in the interspaces of the spirals, giving the surface a minutely punctate appearance; these extend orer the whole surface except of the nuclear whorls; spiral senlpture of, on the summit, seven or eight, between the carine six or eight, and on the base ten or fifteen extremely fine threads, even
and uniform, with about equal interspaces, some a little granular from the radiating sculpture ; beside these there are three very strong earina; one forms the margin of the nearly flat spire, the second extends horizontally jnst below the periphery, the space between them deeply excavated; the third forms the edge of the funicular narow deep umbilicus. The base is conieal, exeavated just within the peripheral carina; it rises to the edge of the umbilicus, which is marked by a strong threat, and within is vertically striated. The last whorl descends from the plane, and finally becomes separated from the body whorl; the margin is simple, sharply angulated by the carinations, otherwise the aperture would be orate, with the columellar side somewhat excavated. Altitude, 1.6; maximum diameter, $z^{m m \prime \prime}$.

Hab.-Off the coast of North Carolina, in 22 to 63 fathoms, sand and gravel, at U. S. Fish Commission Stations 2595, 2595, 260s, 2610 , and 2612 , the temperature varying from 67° to 780 F .

This is a very strongly marked species, in its seulpture recalling C. Verreauxi Fischer, which is larger, less elevated, with a proportionally larger umbilicus, and has not the defleeted aperture. The latter recalls the characters of Tubiola divisa J. Adams, which is otherwise very different.

Cyclostrema pompholyx Dall.
C. pompholyx Dall, Bull, Mus. Comp. Zö̈l., Xvint, p. 394, Pl. xviti, Fig. 9, June, 1889.

This speeies was originally obtained in the Gulf of Mexico, in 805 fathoms, by the Blake expedition, and Dr. Rush obtained a young specimen in 780 fathoms, mud, off Cuba. A specimen with a maximum diameter of 6 and a height of 4.5^{mm} was dredged by the Albutross at Station 2754, in 850 fathoms, ooze, ofi Tobago; bottom temperature, 370.9 F . This considerably extends the known range sonthward.

Cyclostrema valvatoides Jeffreys.
Collected at Station 2760, 90 miles north from Ceara, Brazil, in 1,019 fathoms, broken coral ; temperature $39^{\circ} .4 \mathrm{~F}$.

Cyclostrema diaphanum Verrill.
Obtained at Station 2752, off Santa Lneia, in 281 fathoms, sand; temperature $48^{\circ} \mathrm{F} . ;$ and also at Station 2760 , with the precerling.

Superfanily ZYGOBRANCHIA.
Fimily HALIOTIDE.
Genns HALIOTIS Linné.
Haliotis Pourtalesii ? Dall.
Plate xir, řigs. 1, 3 .
II. Pourfalesii Dall, Bull. Mus. Comp. Zö̈l., Ix, p. 79, 18ڭ1; xvirr, p. 395, 1889.

Shell small, of a pale brick red color, with white dots on some of the spirals, rather elevated, with about two and a half whons; apex small,
prominent; holes abont twenty-five, of which five remain open, the margins of these rather prominent; outside the row of holes the usual sulcus is strongly marked; about midway from the suture to the line of holes is a raised rib, rather obscure, but differing in different individuals and corresponding to an internal sulcus; between the central ridge and the suture there are $n 0$ undulations or transverse ridges of eonsequence; sculpture of well marked, rather flattish, spiral, close-set threads, sometimes with a single finer intercalary thread, overlaid by smaller rather compressed transcerse ridges, in harmony with the ineremental lines; on top of the spirals the ridges bulge like the threads of worsted on canvas embroidery; spire situated well forward and with subvertical sides; interior pearly, the coil of the spire rather elose and the margin of the pillar flattened. Longitude of shell, 23 ; latitude, 18 ; altitude, 11.5 ; nuclens behind the anterior end, 17^{mm}.

Hab.-Station 2815, in 33 fathoms, sand; near Charles Island, of the Galapagos group, in the Pacific.

The nearest relative of this shell is H. parva, from the Cape of Good Hope, which differs from our specimens ehiefly in the greater prominence of the central rib, and in being a little more circular in ontline.

The shell from the Galapagos agrees so exactly with what we know of H. Pourtalesii and with my own recollection of the type specimen destroged in the Chicago ïre, that I am unwilling to separate it, though the distance between the two localities is so great.

The occurrence of this shell at the Galapagos is of great interest apart from its smpposed connection with the Floridian species. No speeies of Haliotis is known from the west coast of South America, of Central America, or of North America south of northern Mexico. There are one or two small not nearly related species in the Melanesian Islands and north Australia. So the present species is remarkably isolated. Nothing of the sort has been previonsly recorderl from the Galapagos. Two specimens were obtained, neither containing the soft parts. The original type of H. Pourtalesii contained the animal. It would probably be referred to the seetion Padollus.

Family FISSURELLID.E.
Genus PUNCTURELLA Lowe.
Puncturella circularis Dall.
Collected at Station 2754, in 880 fathoms, ooze; east from Tobago; temperature 370.9 F .

Puncturella falklandica A. Adams.
Colleeted at Station 2785, in 449 fathoms, mad, on the west coast of Patagonia; temperature 470 F .

This species is amazingly like P. noachina; the only differences I have been able to see in the shells are that in P. nothchina the fissure is generally longer, the septum longer and less vertical, and the apex more
posterior. The sculpture seems essentially similar. I have not been able to give the time necessary for a critical examination of the soft parts of the two forms. The animal of P. fallilandica was remarkable in one respect. Among the specimens collected at this station, all of which possessed the soft parts, some had well pigmented black eyes, while in others the pigment was absent and the organs therefore most have been useless. The males possess a well marked verge in the vicinity of the right tentacle, thus adding to the now very respectable list of Rhipidoglossa which possess an intromittent male organ.

Subgenus FISSURISEPTA Seguenza.
Fissurisepta triangulata Dall.
Puncturella (Fissurisepta) rostrata Watson, Chall. Rep. Gastr., p. 48, Pl. iv, Fig. 10, 1885. Not of Seguenza.

Fissurisepta triangulata Dall, Bnll. Mus. Comp. Zoöl., Xvili, p. 404, June, 1889.
Hab.-Station 2358, off Cozumel Island, coast of Yueatan, in 222 fathoms, coral ; and Station 2668, oft Fernandina, Florida, in 294 fathoms, gravel ; temperature, $46^{\circ} .3 \mathrm{~F}$.

This species is more triangular and erect, less elevated and longer than Segueuza's original rostrata, with typical examples of which the present species has been carefully compared.

Subgenus RIMULA Defrance.
Puncturella (? Rimula) erecta Dall.
Puncturella erecta Dall, Bull. U. S. Nat. Mus., No. 37, p. 170, No. 1077, Angust, 1889.
Shell stont, erect, high, rather short, white or grayish, reticulated; apex minute; nucleus smooth, of a single whorl; radiating seulpture of three series of threads, the strongest alternating with the secondaries and these with the tertiaries, which last are almost hidden under the concentric sculpture, which consists of round, even, uniform, equally. spaced threads clinging closely to and passing over the radii like cords over a rod; apex at the posterior third, from which the posterior slope is straight and steep; anteriorly the top is arched, then falls steeply to the frontedge; slit elongate, with its onter edges raised, a suture in front continued to the front edge, corresponding to an internal groove which does not indent the margin; perforation long and narrow, con. tained in the upper half of the anterior dorsum ; internally there is no true septum, but a rim of shelly matter like a collar is pushed back behind the orifice as if the latter had been made by pushing a pin in from the outside and pressing it backward; interior of shell white, musenlar impression strong, margin of shell slightly erenulated by the seulpture; maximum longitude of shell, 10 ; latitude, 7.5 ; altitude, 6.8^{mm}.

Hab.-Station 2601, in 107 fathoms, off Cape Hatteras, North Caro lina; temperature, $67^{\circ} .4$.

This is one of those intermediate forms which bridge over the gaps between subgenerd. It has exactly the sculpture of some varieties of Cranopsis asturiana, but its apex is smaller and more close-set, the form of the shell different, the perforation nearer the apex of the shell, and the shell itself is solid and strong, while the C. asturiana is delicate and thin. It is difficult to say whether the present species should be called a Puncturella (s. s.), a Cranopsis or a Rimula.

Subgenus CRANOPSIS Adams.
 Cranopsis asturiana Fischer.

Collected at Station 2666, in 270 fathoms, sand, off Fernandina, Florida; and at Station 2750, in 496 fathoms, off St. Bartholomew, West Indies; temperature $48^{\circ} .3$ and $44^{\circ} .4 \mathrm{~F}$.

Genus EMARGINULA Lamarek.
Emarginula tumida Sowerby.
Collected at Station 2758,90 miles sontheast from Cape San Roque, Brazil, in 20 fathoms.

Subgenus SUBEMARGINULA Blainville.
Subemarginula octoradiata Gmelin.
Collected at Port Castries, Santa Lucia, West Indies, and at the Abrolhos Islauds, near Porto Allegre, North Brazil.

Geuus fissurella Bruguière.
Fissurella alternata Say.
Not rare at the Abrolhos Islands, Brazil.
Subgenus GLYPHIS Carpenter.
Glyphis barbadensis Gmelin.
Collected at the Abrolhos Islands, Brazil.
Genns FISSURELLIDEA Orbigny.
Fissurellidea limatula Reeve.
Collected at Station 2765, in $10 \frac{1}{2}$ fathoms, sand, off the Rio de la Plata, from whence it ranges northward to the coast of North Carolina.

EXPLANATION OF PLATES.

When an asterisk is attached to a figure it indicates that the species was obtained in the Pacific Ocean. All those withont an asterisk are Atlantic species. The figures following the name indicate the longest dimension of the actual shell represented as figured, in millimeters.

Plate V.
Fig. 1. Chrysodomus (Sipho) Rushii Dall, 11.0; p. 323.
2. Nassu scissuruta Dall, 12.0 ; 1. 326.
3. Conomitra intermedia Dall, 15.5; p. 316.
4.* Columbella permodesta Dall, 14.0; p. 327.
5. Mesorhytis costatus Dall, 14.0 ; p. 317.
6.* Chrysodomus grisens Dall, 32.0; p. 322.
7.* Pleurotoma? exulans Dall, 32.0; p. 302.
8.* Calliotectum vernicosum Dall, 48.0; p. 304.
9. Terebra benthalis var. nodata Dall, 18.5; p. 299.
10.* Chrysodomus amiantus Dall, 76.0; p. 321.
11. Mangilia untomia Dall, 18.0; p. 304.

Plate Vi.

Fig. 1.* Leucosyrinx Goodei Dall, 80.0 ; p. 300.
2.* Pleurotomella cingulatu Dall, 73.0; p. 306.
3.* Leucosyrinx persimilis 1)all, $80.0 ;$ p. 301.
4.* Pleurotomella (Gymnobela) agonia Dall, 16.0 ; p. 301.
5.* Plewrotomella argeta Dall, 43.0 ; p. 307.
6. Fusus ceramidus Dall, 46.5; p. 318.

7:* Chrysodomns aphelus Dall, 30.0; 1. 323.

* 8. Nassarina columbellata Dall, 12.2; p. 325.
9.* Buccinum viridum Dall, 46.0 ; p, $3 \underset{2}{ } 0$.

Plate vil.

Fig. 1.* Murex (C'hicoreus) Lecamus Dall, 70.0 ; p. 329.
2.* Calliostome platinum Dall, 32.0; p. 343.
3.* Turcicula Bairdii Dall, 50.0 ; p. 346 .
4.* Gaza Rathbuni Dall, alt. 24.0; p. 342.
5. Fusus apynotus Dall, 24.0; p. 318.
6. Fusus alcimus Dall, 15.0 ; p. 319.
7.* Turcicula Macdonaldi Dall, 75.0 ; p. 348.

Plate Viif.

Fig. 1.* Terticordia perplicata Dall, 33.0 ; p. 278.
2. Pecten glyptus Verrill, right valve, 60.0 ; p. 248.
3. The same, interior, showing radii.
4. Poromya cymata Dall, 9.0 ; p. こ89.
5. Cuspidarit monosteira Dall, 5.0; p. 281.
6. Poromya microdonta Dall, alt. 11.5 ; p. 290.
7.* Lyonsiella radiata Dall, 13.0; p. .276.
8.* Poromya (Dermatomya) mactroides Dall, 18.0; p. 291.
9.* Cryptodon barbarensis Dall, 17.0 ; p. 261.

Plate ix.
Fig. 1.* Dentalium megathyris Dall, 95.0; p. 993.
2. Floating oricapsule of Scaphella ? brasilieusis Sol. ; 50 by 55^{mm}; p. 312.
3. Solariella infundibulum Watson, 子, eularged diagram of the soft parts, with the shell removed; the operculuin in situ ; p. 349.
4.* Tolutilithes Philippiana Dall, 36.5; p. 313.
5. Scaphella magellanica Sowerby, larval shell, from ovicapsule dredged at Station 2779 , enlarged ; 11.0; p. 311.
6. Scaphella magellanica Sowerby, ovicapsule on valve of Pecten. The diameter of the base of the capsule is abont $28.0 ; \mathrm{p} .311$.
7. Halistylus columna Dall (much enlarged). 5.8 ; p. 341.
8.* C'adulus albicomatus Dall, 24.0; p. 295.

Plate x.

Fıg. 1. Callocardia (Tesicomya) Smithii Dall, interior of left valve, 28.0; p. 268.
2. The same, hinge of right valve.
3. The same, exterior of left valve.
4.* Lophocardium Annctto Dall, 29.0; p. 264.
5.* Callocardia guttata A. Adams, 17 by 17.5 ; from a drawing by Mr. Edgar A. Smith of the unique type in the British Musenm; p. 267.
6. Callocardia (Callogonia) Leeana Dall, $20.0 ;$ p. 269.
7. The same, hinge of right valve from below, old specimen, 35.0.

8 . The same, left valve.
9. The hinge (Fig. 7), viewed from the left, right valye.
10.* Malletia goniura Dall, 15.5 ; p. 251.
11.* Cymatoica occidentalis Dall, 12.5; p. 272.
12. Cymatoica orientalis Dall, 9.5; p. 273.

Plate xi.
Fig. 1. Pteronotus phaneus Dall, 17.0; p. 330.
2. Pecten (Pseudamnsinm) strigillatum Dall, 9.0; p. 250.
3. Euplewra Stimpsoni Dall, 12.0; p. 331.
4. Crussatella floridana Dall, 50.0; p. 260.
5. Benthonclla gaza Dall, >.0; p. 3.38.
6. Marginella cineracea Dall, 14.0; p. 310.
7. Mitra Bairdii Dall, 35.0; p. 315.
8. Scala babylonia Dall, 30.0; p. 332.
9. Pceten efluens Dall, 26.0; p. 249.
10. Peristichia toreta Dall, 10.75; p. 334.
11. Cyclostrema cistronium Dall, alt. $1.6 ; 1$ 1. 354.

Plate xif.

Fig. 1.* Haliotis Pourtalesii Dall, upper surface, a calcareous foraminifer adhering near the margiu of the aperture ; $23.0 ; \mathrm{p} .3$ 35.
2. Adeorbis sincera Dall, 3.25 ; p. 338.
3.* Haliotis Pourtalesii Dall, front view; 23.0; p. 355.
4. Calliostoma Coppingeri Smith, 10.0; p. 344.
5. Calliostoma Riöensis Dall, 15.0; p. 345.
6.* Solariella oxybasis Dall, 13.5 ; p. 352.
7.* Actaeon perconicus Dall, 5.0; p. 296.
8. Solariella actinophora Dall, alt. 7.25 ; the aperture is somewhat broken on the base; p. 353.
9.* Nassa Tounsendi Dall, 10.0; p. 326.
10.* Pleurotomella suffinsa Dall, 31.5 ; p. 308.
11. Solariella actinophora Dall, view from above; maximm diameter, 9.0. In the figure the radiations lying between the suture and the first spiral rib are not represented as sufficiently numerous or conspicnons on the last whorl; p. 353.
12.* Scaphander iuterruptus Dall, 33.0; p. 297.

Plate Xili.

Fig. 1. Nucula cymella Dall, 51.0; p. 258.
2. Thracia Stimpsoni Dall, 65.0; p. 275.
3.* Malletia (Tindaria) virens Dall, 4.5; p. 254.
4. Malletia (Tindaria) acinula Dall, 5.0; p. 253.
5.* Leda poutonia 1)all, from above, 14.5; p. 25%.
$5 b$. Leda pontonia Dall, side view, 14.5 ; p. 257.
6. Foldia scapania Dall, 18.25 ; p. 254.
7. Leda cestrota Dall, 25.5; p. 255.
8. Foldia pompholyx Dall, 4.0 ; 1. 255.
9. Nucula callicredemиа Dall, 12.5; 1. 258.
10. Malletia (Tindaria) agathida Dall, 5.5; p. 252.
11. Cytherea eucymata Dall, 40.0 ; no attempt has been made to reprodnce the color-pattern in this figure, which was drawn from a bleached specimen; p. 271.
12. Myonera paucistriata Dall, 10.0 ; p. 283.
13. Cuspidaria (Luzonia) chilensis Dall, 11.0; p. 282.

Plate xiv.

Fig. 1. Cryptodon pyriformis Dall, $14.0 ;$ p. 263.
2. Cryptodon fuegiënsis Dall, 25.0 ; p. 262.
3. Cryptodon ovoideus Dall, 25.0; p. 263.
4. Nucula Ferrillii Dall, 5.0; p. 257.
5. Semele unculoides Courad, 5.0 ; p. 974.
6. Lucina lencocyma Dall, from above; p. 263.
7. Lneina lencocyma Dall, 6.5; p. 263.
8. Teneriglussa vesica Dall, front view of right valve, 21.0; p. 270.
9. Limáa Bromiaua Dall, 3.5; p. 250.
10. Limatula setifera Dall, 9.0 ; p. 250.
11. Lucina sagrinata Dall, 7.6; p. 263.
12. Teneriglossa resica Dall, alt. 21.0; p. 270.
13. Lucina sombrerensis Dill, 6.5; p. 263.

INDEX TO THE GENERA AND SUBGENERA,

Abra, 274.
Aclis, 333.
Асшæа, 340.
Acrilla, 332.
Acteon, 296.
Adeorbis, 338.
A esopus, 328.
Alaba, 336.
A malthea, 339.
Anachis, 328.
Anaitis, 271.
Ancillaria, 310.
A rea, 259.
Asthenothaerus, 275.
Astralium, 341.
Astyris, 327.
Atys, 298.
Basilissa, 354.
Bembix, 353.
Benthonella, 336.
Borsonia, 309.
Buccinum, 320.
Bulla. 298.
Bushia, 275.
Cadulus, 295.
Calliostoma, 343.
Calliotectum, 304.
Callocardia, 266.
Callogaza, 342.
Callogonia, 267, 269.
Callista, 272.
Cantharidus, 341.
Capulus, 339.
Cardinm, 264.
Cerithium, 335.
Cetoconcha, 289.
Cetomya, 289, 290.
Chama, 264.
Chicoreus, 329.
Chioue, 271.
Chrssodomus, 321.
Cithna, 336.
Cocculina, 340 .
Columbella, 327, 328.
Conomitra, 316.
Conus, 300.
Coralliophila, 332.
Corbula, 292.
Cordieria, 309, 317.
Cranopsis, 358.
Crassatella, 260.
Crenella, 251.
Crepidula, 339.
Cryptodon, 261.
Cuspidaria, 279, 289.
Cyclostrema, 354
Cylichna, 298.

Cymatoica, 272.
Cytherea, 271.
Dermatonaza, 2:9, 291.
Dentalinm, 293.
Diplodonta, 264.
Drillia, 303.
Emarginula, : 558.
Eugina, 325.
Ervilia, 274.
Eupleura, 331.
Fasciolaria, 317.
Fissurella, 358.
Fissurellidea, 358.
Fissurisepta, 357.
Fusus, 318.

Gaza, 842.
Genota, 303.
Glyphis, 358.
Glyphostoma, 309.
Gouldia, 261.
Gymnobela, 307.
Haliotis, 355.
Halistylus, 341.
İela, 336.
Helix, 299.
Kelliella, 267.
Latirus, 318.
Leda, 255.
Lencosyrinx, 300.
Leucozonia, 318.
Lima, 250.
Limæa, 251.
Limatula, 250.
Liotia, 354.
Litorina, 335.
Lophocardium, 264.
Lucina, 263.
Lunatia, 340.
Luzonia, 282.
Lyonsiella, 276.
Macoma, 272, 273.
Malletia, 251.
Mangilia, 304.
Margarita, 345.
Marginella, 310.
Mesorhytis, 317.
Mitra, 315.
Mitrularia, 339.
Murex, 329.
Myonera, 283, 289.

Nassa, 326.
Nassatia, 325.
Nassarina, 325.
Natica, 339.
Nitidella, 328.
Nucula, 257.
Olivella, 309.
Omphalius, 341.
Oïcorys, 334.
Pecten, 248.
Pectunculus, 260.
Peristichia, 333.
Persicula, 311.
Petalocouchus, 335.
Pisania, 325.
Pleurotoma, 300, 302.
Pleurotomella, 3 (4.
Poromya, 284, 289.
Pteronotus, 330.
Puncturella, 356.
Parpura, 331.
Ranularia, 334.
Rimula, 357.
Sabatia, 298.
Saxicava, 292.
Scala, 332.
Scaphander, 297.
Scaphella, 311.
Seguenzia, 335.
Semele, 274.
Sipho, 323.
Siphonaria, 299.
Solariella, 349.
Solarium,' 336 .
Subemarginula, 358.
Terebra, 299.
Thracia, 275.
Tindaria, 252.
Triforis, 335.
Tritonium, 334.
Turcicula, 345.
Ctriculns, 297.
Venus, 271.
Vermetus, 335.
Verticordia, 277.
Vesicomya, 267, 270.
Toluta, 311.
Volntilithes, 313.
Toldia, 254.

[^0]: * Bull. U. S. Nat. Mus., No. 37, p. 2b, July, 1889.
 \dagger See Proc. Acad. Nat. Sci. Philadelphia for 1889, pp. 274-76.

